+0  
 
+1
33
1
avatar+632 

The profit from selling local ballet tickets depends on the ticket price. Using past receipts, we find that the profit can be modeled by the function p(t) = -16t^2 + 800t - 4000 where t is the price of each ticket.

 

a. What ticket price would give the maximum profit?

 

b. What is the maximum profit?

 

c.  What ticket price would give the profit of $5424?

5424 = -16t^2 + 800t - 4000

GAMEMASTERX40  Apr 10, 2018
Sort: 

1+0 Answers

 #1
avatar+85726 
+2

p(t) = -16t^2 + 800t - 4000

 

a) The price of the ticket that maximizes the profit  is given  by  :

 

-800 / ( 2 * -16 )  =   -800 / (-32)  =  $25

 

b) The max profit  is    -16(25)^2 + 800(25) - 4000  = $6000

 

c)  5424 = -16t^2 + 800t - 4000    subtract 5424 from each side

 

-16t^2 + 800t - 9424  = 0       multiply through by -1

 

16t^2 - 800t + 9424 = 0   divide through  by 16

 

t^2 - 50t + 589  = 0    factor as

 

(t - 31) (t - 19)  =  0

 

Setting both factors to 0 and solving for t produces two possible prices...$19 or $31

 

 

cool cool cool

CPhill  Apr 10, 2018

18 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details