+0  
 
0
588
1
avatar

To approximate the straight line distance between point D and point E a woman walks 720ft from point D to point F then turns 47degrees to face point E and walks 940ft to point E. Find DE and the leanths of the angles of the triangle

 Jan 26, 2015

Best Answer 

 #1
avatar+130540 
+5

We can use the Law of Cosines to find  DE...so we have

DE^2 = 720^2 + 940^2 - 2(720)(940)cos47

DE^2 = 478847.0198200768

DE = about 692                                                                        

And using the Law of Sines, we can find angle EDF                 

So we have

sin EDF / 940 = sin 47 / 692

sin EDF  = 940sin47/692 = .9934573403495087

And using the sin inverse

sin-1 (.9934573403495087) = EDF= 83.44°

And the remaining angle, DEF = (180 - 47 - 83.44) = 49.56°

 

 Jan 26, 2015
 #1
avatar+130540 
+5
Best Answer

We can use the Law of Cosines to find  DE...so we have

DE^2 = 720^2 + 940^2 - 2(720)(940)cos47

DE^2 = 478847.0198200768

DE = about 692                                                                        

And using the Law of Sines, we can find angle EDF                 

So we have

sin EDF / 940 = sin 47 / 692

sin EDF  = 940sin47/692 = .9934573403495087

And using the sin inverse

sin-1 (.9934573403495087) = EDF= 83.44°

And the remaining angle, DEF = (180 - 47 - 83.44) = 49.56°

 

CPhill Jan 26, 2015

1 Online Users

avatar