Find all of the fifth roots of the complex number 4+32i. Put your answers in the rectangular form a+bi and in the polar form z=re(iΘ). Please show how you got to your answers.
(4+32i)(1/5)
r=√(a2+b2)
r=√(42+322)
r=√(16+1024)
r=√1040
r=4√65
tan(Θ)=b/a
tan(Θ)=32/4
tan(Θ)=8
Θ=tan−1(8)
Θ≈1.4464413322481
z=r∗e(i∗Θ)
z≈4√65∗e(i∗1.4464413322481)
z(1/5)≈(4√65∗e(i∗1.4464413322481))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗1.4464413322481∗(1/5))
z(1/5)≈2.003103242348∗e(i∗1.0766143512748)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(1.0766143512748)+i∗sin(1.0766143512748))
z≈2.003103242348∗(0.4743116564868+i∗0.88035700289064)
z≈0.9500952169545+i∗1.763445966914
z≈0.9500952169545+1.763445966914i
z(1/5)≈(4√65∗e(i∗7.7296266394277))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗7.7296266394277∗(1/5))
z(1/5)≈2.003103242348∗e(i∗1.5459253278855)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(1.5459253278855)+i∗sin(1.5459253278855))
z≈2.003103242348∗(0.024868434927217+i∗0.99969073264899)
z≈−0.049814942634829+i∗0.0001545372385216
z≈−0.049814942634829+0.0001545372385216i
z(1/5)≈(4√65∗e(i∗14.012811946607))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗14.012811946607∗(1/5))
z(1/5)≈2.003103242348∗e(i∗1.6955283616309)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(1.6955283616309)+i∗sin(1.6955283616309))
z≈2.003103242348∗(−0.12440885450163+i∗0.99223104009177)
z≈−0.24920377983349+i∗1.9875412136019
z≈−0.24920377983349+1.9875412136019i
z(1/5)≈(4√65∗e(i∗20.2959972538))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗20.2959972538∗(1/5))
z(1/5)≈2.003103242348∗e(i∗4.059994507574)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(4.05994507574)+i∗sin(4.05994507574))
z≈2.003103242348∗(−0.60772245598411+i∗−0.7941494925344)
z≈−1.2173308220295+i∗1.5907634234047
z≈−1.2173308220295+1.5907634234047i
z(1/5)≈(4√65∗e(i∗26.5918256098))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗26.5918256098∗(1/5))
z(1/5)≈2.003103242348∗e(i∗5.315836512196)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(5.315836512196)+i∗sin(5.315836512196))
z≈2.003103242348∗(0.56748448302716+i∗−0.82338409112843)
z≈−1.1367300079339+i∗−1.6493233426371
z≈−1.1367300079339+−1.6493233426371i
z≈−1.1367300079339−1.6493233426371i
.z = (4 + 32i)^(1/5)
Divide: 1 / 5 =0.2
Power: (4+32i) ^ 0.2 = 1.9198686+0.5714255i
Algebraic form:
z = 1.9198686+0.5714255i
Exponential form:
z = 2.0031032 × ei 16°34'30″
Trigonometric form:
z = 2.0031032 × (cos 16°34'30″ + i sin 16°34'30″)
Polar form:
r = |z| = 2.0031
φ = arg z = 16.575° = 16°34'30″ = 0.09208π
(4+32i)(1/5)
r=√(a2+b2)
r=√(42+322)
r=√(16+1024)
r=√1040
r=4√65
tan(Θ)=b/a
tan(Θ)=32/4
tan(Θ)=8
Θ=tan−1(8)
Θ≈1.4464413322481
z=r∗e(i∗Θ)
z≈4√65∗e(i∗1.4464413322481)
z(1/5)≈(4√65∗e(i∗1.4464413322481))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗1.4464413322481∗(1/5))
z(1/5)≈2.003103242348∗e(i∗1.0766143512748)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(1.0766143512748)+i∗sin(1.0766143512748))
z≈2.003103242348∗(0.4743116564868+i∗0.88035700289064)
z≈0.9500952169545+i∗1.763445966914
z≈0.9500952169545+1.763445966914i
z(1/5)≈(4√65∗e(i∗7.7296266394277))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗7.7296266394277∗(1/5))
z(1/5)≈2.003103242348∗e(i∗1.5459253278855)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(1.5459253278855)+i∗sin(1.5459253278855))
z≈2.003103242348∗(0.024868434927217+i∗0.99969073264899)
z≈−0.049814942634829+i∗0.0001545372385216
z≈−0.049814942634829+0.0001545372385216i
z(1/5)≈(4√65∗e(i∗14.012811946607))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗14.012811946607∗(1/5))
z(1/5)≈2.003103242348∗e(i∗1.6955283616309)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(1.6955283616309)+i∗sin(1.6955283616309))
z≈2.003103242348∗(−0.12440885450163+i∗0.99223104009177)
z≈−0.24920377983349+i∗1.9875412136019
z≈−0.24920377983349+1.9875412136019i
z(1/5)≈(4√65∗e(i∗20.2959972538))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗20.2959972538∗(1/5))
z(1/5)≈2.003103242348∗e(i∗4.059994507574)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(4.05994507574)+i∗sin(4.05994507574))
z≈2.003103242348∗(−0.60772245598411+i∗−0.7941494925344)
z≈−1.2173308220295+i∗1.5907634234047
z≈−1.2173308220295+1.5907634234047i
z(1/5)≈(4√65∗e(i∗26.5918256098))(1/5)
z(1/5)≈(4√65)(1/5)∗e(i∗26.5918256098∗(1/5))
z(1/5)≈2.003103242348∗e(i∗5.315836512196)
z=r∗(cos(Θ)+i∗sin(Θ))
z≈2.003103242348∗(cos(5.315836512196)+i∗sin(5.315836512196))
z≈2.003103242348∗(0.56748448302716+i∗−0.82338409112843)
z≈−1.1367300079339+i∗−1.6493233426371
z≈−1.1367300079339+−1.6493233426371i
z≈−1.1367300079339−1.6493233426371i