+0  
 
0
573
2
avatar

Suppose cos (θ) = -0.6.  What is the value of cos (pi + θ)?  Anyone who can write out the steps to this problem will be awesome.  It sounds like an easy question, but I am stumped.

 Oct 5, 2015

Best Answer 

 #1
avatar
+5

Suppose cos (θ) = -0.6.  What is the value of cos (pi + θ)?  Anyone who can write out the steps to this problem will be awesome.  It sounds like an easy question, but I am stumped.

 

It appears that you are using "radians" instead of "degrees".

Cos(theta)=-.6, therefore the inverse cosine of Theta is=2.2143.... + 3.141592653=5.355892653

Therefore, Cos(5.355892653)=.6, which is your answer.

 Oct 5, 2015
 #1
avatar
+5
Best Answer

Suppose cos (θ) = -0.6.  What is the value of cos (pi + θ)?  Anyone who can write out the steps to this problem will be awesome.  It sounds like an easy question, but I am stumped.

 

It appears that you are using "radians" instead of "degrees".

Cos(theta)=-.6, therefore the inverse cosine of Theta is=2.2143.... + 3.141592653=5.355892653

Therefore, Cos(5.355892653)=.6, which is your answer.

Guest Oct 5, 2015
 #2
avatar+130536 
+5

Using the cosine inverse, we have

 

cos-1(.-.06)  = theta = about 126.87°.....however......this could also be a 3rd quadrant angle =

 

180 + (180 - 126.87)  = about 233.13°

 

And substituting 180 for "pi,"  we have

 

And cos(pi + theta)  = cos(180 + theta) = -cos(theta)  = -cos(126.87)  = 0.6     ....and....

 

cos(180 +233.13) =  -cos(233.13)  = 0.6

 

 

 

cool cool cool

 Oct 5, 2015

1 Online Users