Solve for x:
log(1/x) = -2.3144×10^-6
Cancel logarithms by taking exp of both sides:
1/x = 0.999998
Take the reciprocal of both sides:
Answer: | x=1
ln(1/x)=(-23.144*10^-7), what is x?
-lnx=(-23.144*10^-7)
lnx=23.144*10^-7
X=e^(23.144*10^-7)
x=e^((2893/1250000000)) approx 1.00000023
\(ln(1/x)=(-23.144*10^-7)\)
\(ln(1/x)=-23.144*10^-7\)
\(ln(1/x)=-23.144*1/10^7\)
\(ln(1/x)=-23.144*1/10000000\)
\(ln(1/x)=-23.144/10000000\)
\(ln(1/x)=-0.0000023144\)
\(e^-0.0000023144=1/x\)
\(1/e^(0.0000023144)=1/x\)
\(1/1.0000023144026782=1/x\)
\(0.9999976856026782474=1/x\)
\(0.9999976856026782474x=1\)
\(x= 1.0000023144026781999599\)
.