Solve for x:
log(1/x) = -2.3144×10^-6
Cancel logarithms by taking exp of both sides:
1/x = 0.999998
Take the reciprocal of both sides:
Answer: | x=1
ln(1/x)=(-23.144*10^-7), what is x?
-lnx=(-23.144*10^-7)
lnx=23.144*10^-7
X=e^(23.144*10^-7)
x=e^((2893/1250000000)) approx 1.00000023
ln(1/x)=(−23.144∗10−7)
ln(1/x)=−23.144∗10−7
ln(1/x)=−23.144∗1/107
ln(1/x)=−23.144∗1/10000000
ln(1/x)=−23.144/10000000
ln(1/x)=−0.0000023144
e−0.0000023144=1/x
1/e(0.0000023144)=1/x
1/1.0000023144026782=1/x
0.9999976856026782474=1/x
0.9999976856026782474x=1
x=1.0000023144026781999599
.