Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
750
3
avatar

ln(1/x)=(-23.144*10^-7), what is x?

 Dec 20, 2015

Best Answer 

 #2
avatar+118702 
+5

ln(1/x)=(-23.144*10^-7), what is x?

-lnx=(-23.144*10^-7)

lnx=23.144*10^-7

X=e^(23.144*10^-7)

x=e^((2893/1250000000)) approx 1.00000023

 Dec 20, 2015
 #1
avatar
+5

Solve for x:
log(1/x) = -2.3144×10^-6

Cancel logarithms by taking exp of both sides:
1/x = 0.999998

Take the reciprocal of both sides:
Answer: | x=1
 

 Dec 20, 2015
 #2
avatar+118702 
+5
Best Answer

ln(1/x)=(-23.144*10^-7), what is x?

-lnx=(-23.144*10^-7)

lnx=23.144*10^-7

X=e^(23.144*10^-7)

x=e^((2893/1250000000)) approx 1.00000023

Melody Dec 20, 2015
 #3
avatar+1904 
0

ln(1/x)=(23.144107)

 

ln(1/x)=23.144107

 

ln(1/x)=23.1441/107

 

ln(1/x)=23.1441/10000000

 

ln(1/x)=23.144/10000000

 

ln(1/x)=0.0000023144

 

e0.0000023144=1/x

 

1/e(0.0000023144)=1/x

 

1/1.0000023144026782=1/x

 

0.9999976856026782474=1/x

 

0.9999976856026782474x=1

 

x=1.0000023144026781999599

.
 Dec 20, 2015

2 Online Users

avatar