(x^1/4 + 16)^2 = 144 + x^3/2
\((\frac{x^1}{4} + 16)^2 = 144 + \frac{x^3}{2}\\ \frac{1}{16}*(x+ 64)^2 = 144 + \frac{x^3}{2}\\ (x+ 64)^2 = 144*16 + 8x^3\\ x^2+128x+4096=2304+8x^3\\ x^2+96x+1792=8x^3\\ 8x^3-x^2-96x-1792=0\\ \)
Have fun solving that :)
To continue where Melody left off :
8x^3 - x^2 - 96x - 1792 = 0
There is only one real solution that occurs at about x =6.7755
Here are the real and non-real solutions : http://www.wolframalpha.com/input/?i=8x^3++-x^2++-+96x++-+1792++%3D+0
I've assumed this is meant to be: (x^(1/4) + 16)^2 = 144 + x^(3/2)
The real number solution is obtained as follows:
.