+0  
 
0
670
3
avatar

(x^1/4 + 16)^2 = 144 + x^3/2

 May 10, 2016
 #1
avatar+118723 
0

(x^1/4 + 16)^2 = 144 + x^3/2

 

\((\frac{x^1}{4} + 16)^2 = 144 + \frac{x^3}{2}\\ \frac{1}{16}*(x+ 64)^2 = 144 + \frac{x^3}{2}\\ (x+ 64)^2 = 144*16 + 8x^3\\ x^2+128x+4096=2304+8x^3\\ x^2+96x+1792=8x^3\\ 8x^3-x^2-96x-1792=0\\ \)

 

Have fun solving that :)

 May 10, 2016
 #2
avatar+130516 
0

To continue where Melody left off :

 

8x^3  - x^2  - 96x  - 1792   =  0 

 

There is only one real solution that occurs at about  x  =6.7755

 

Here are the real and non-real solutions : http://www.wolframalpha.com/input/?i=8x^3++-x^2++-+96x++-+1792++%3D+0

 

cool cool cool

 May 10, 2016
 #3
avatar+33661 
+5

I've assumed this is meant to be:   (x^(1/4) + 16)^2 = 144 + x^(3/2)

 

The real number solution is obtained as follows:

 

s1

s2

.

 May 10, 2016

1 Online Users

avatar