+0  
 
+1
70
1
avatar+591 

How many vertical asymptotes does the equation \(y=\frac{x-1}{x^2+6x-7}\) have?

ant101  Aug 28, 2018
 #1
avatar+90969 
+2

A vertical asymptote will  potentially  occur  where an x value makes the denominator of this rational function  = 0

 

To find these possibilities....set the denominator   =  0

 

x^2 + 6x  - 7   =  0

 

(x + 7) ( x - 1)    = 0

 

Setting both factors to 0 and solving for x produces   x  = -7  and  x  = 1

 

However.... since the  numerator  also  has the  factor (x -1), we will have a "hole"  at x  = 1

 

The only  true vertcal asymptote    will be at   x  =  -7

 

See the graph  here :  https://www.desmos.com/calculator/ohkiuoni6o

 

 

cool cool cool

CPhill  Aug 28, 2018

20 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.