+0  
 
0
1387
1
avatar

what is 4(3^2x) = e^x

 May 3, 2014

Best Answer 

 #1
avatar+33665 
+5

Take logs of both sides and use the properties of logarithms (see the Formulary):

4*32x = ex take logs (use natural log):

ln(4)+2x*ln(3) = x Rearrange and collect terms in x:

(2*ln(3)-1)*x = -ln(4) so:

x = -ln(4)/(2*ln(3)-1)

$${\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{ln}{\left({\mathtt{4}}\right)}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{ln}{\left({\mathtt{3}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}} = {\mathtt{x}} = -{\mathtt{1.157\: \!923\: \!406\: \!654\: \!701\: \!8}}$$

 May 4, 2014
 #1
avatar+33665 
+5
Best Answer

Take logs of both sides and use the properties of logarithms (see the Formulary):

4*32x = ex take logs (use natural log):

ln(4)+2x*ln(3) = x Rearrange and collect terms in x:

(2*ln(3)-1)*x = -ln(4) so:

x = -ln(4)/(2*ln(3)-1)

$${\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{ln}{\left({\mathtt{4}}\right)}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{ln}{\left({\mathtt{3}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}} = {\mathtt{x}} = -{\mathtt{1.157\: \!923\: \!406\: \!654\: \!701\: \!8}}$$

Alan May 4, 2014

2 Online Users

avatar