Take logs of both sides and use the properties of logarithms (see the Formulary):
4*32x = ex take logs (use natural log):
ln(4)+2x*ln(3) = x Rearrange and collect terms in x:
(2*ln(3)-1)*x = -ln(4) so:
x = -ln(4)/(2*ln(3)-1)
$${\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{ln}{\left({\mathtt{4}}\right)}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{ln}{\left({\mathtt{3}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}} = {\mathtt{x}} = -{\mathtt{1.157\: \!923\: \!406\: \!654\: \!701\: \!8}}$$
Take logs of both sides and use the properties of logarithms (see the Formulary):
4*32x = ex take logs (use natural log):
ln(4)+2x*ln(3) = x Rearrange and collect terms in x:
(2*ln(3)-1)*x = -ln(4) so:
x = -ln(4)/(2*ln(3)-1)
$${\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{ln}{\left({\mathtt{4}}\right)}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{ln}{\left({\mathtt{3}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}} = {\mathtt{x}} = -{\mathtt{1.157\: \!923\: \!406\: \!654\: \!701\: \!8}}$$