We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
122
1
avatar

Use a double-angle identity to find the exact value of each expression.

 

1. sin 120°

2. tan 60°

3. cos 4π/3

4. sin 5π/3

 Apr 17, 2019
 #1
avatar+7725 
+1

\(\sin\left(120^{\circ}\right)\\ = 2\sin\left(60^{\circ}\right)\cos\left(60^{\circ}\right)\\ =2\left(\dfrac{\sqrt3}{2}\right)\left(\dfrac{1}{2}\right)\\ =\dfrac{\sqrt3}2\)   

 

 

 \(\tan\left(60^{\circ}\right)\\ =\dfrac{2\tan\left(30^{\circ}\right)}{1-\tan^2\left(30^{\circ}\right)}\\ =\dfrac{\dfrac{2}{\sqrt3}}{1-\dfrac{1}{3}}\\ =\dfrac{\dfrac{2}{\sqrt3}}{\dfrac{2}{3}}\\ =\dfrac{3}{\sqrt3}\\ =\sqrt3\)

 

\(\cos\left(\dfrac{4\pi}{3}\right)\\ = 2\cos^2\left(\dfrac{2\pi}3{}\right) - 1\\ = 2\left(2\cos^2\left(\dfrac{\pi}{3}\right)-1\right)^2-1\\ =2\left(2\left(\dfrac{1}{2}\right)^2-1\right)^2 - 1\\ =2\left(-\dfrac{1}{2}\right)^2 - 1\\ =-\dfrac{1}{2}\)

 

\(\sin\left(\dfrac{5\pi}{3}\right)\\ = 2\sin\left(\dfrac{5\pi}{6}\right)\cos\left(\dfrac{5\pi}{6}\right)\\ = 2\left(\dfrac{1}{2}\right)\left(\dfrac{-\sqrt3}{2}\right)\\ =\dfrac{-\sqrt3}2\)

.
 Apr 18, 2019

25 Online Users

avatar