+0  
 
0
146
1
avatar

Use a double-angle identity to find the exact value of each expression.

 

1. sin 120°

2. tan 60°

3. cos 4π/3

4. sin 5π/3

 Apr 17, 2019
 #1
avatar+7763 
+1

\(\sin\left(120^{\circ}\right)\\ = 2\sin\left(60^{\circ}\right)\cos\left(60^{\circ}\right)\\ =2\left(\dfrac{\sqrt3}{2}\right)\left(\dfrac{1}{2}\right)\\ =\dfrac{\sqrt3}2\)   

 

 

 \(\tan\left(60^{\circ}\right)\\ =\dfrac{2\tan\left(30^{\circ}\right)}{1-\tan^2\left(30^{\circ}\right)}\\ =\dfrac{\dfrac{2}{\sqrt3}}{1-\dfrac{1}{3}}\\ =\dfrac{\dfrac{2}{\sqrt3}}{\dfrac{2}{3}}\\ =\dfrac{3}{\sqrt3}\\ =\sqrt3\)

 

\(\cos\left(\dfrac{4\pi}{3}\right)\\ = 2\cos^2\left(\dfrac{2\pi}3{}\right) - 1\\ = 2\left(2\cos^2\left(\dfrac{\pi}{3}\right)-1\right)^2-1\\ =2\left(2\left(\dfrac{1}{2}\right)^2-1\right)^2 - 1\\ =2\left(-\dfrac{1}{2}\right)^2 - 1\\ =-\dfrac{1}{2}\)

 

\(\sin\left(\dfrac{5\pi}{3}\right)\\ = 2\sin\left(\dfrac{5\pi}{6}\right)\cos\left(\dfrac{5\pi}{6}\right)\\ = 2\left(\dfrac{1}{2}\right)\left(\dfrac{-\sqrt3}{2}\right)\\ =\dfrac{-\sqrt3}2\)

.
 Apr 18, 2019

10 Online Users

avatar