What is the solution to the compound inequality in interval notation? 4(x+1)>−4 or 2x−4≤−10
A. (−∞, −3] or (−2, ∞)
B. (−∞, −3] or (2, ∞)
C. (−∞, −2) or [3, ∞)
D. (−3, −2]
\(4(x+1)>-4\) or \(2x-4≤-10\)
Firstly solve for x in the first inequality.
\(4(x+1)>-4\)
\(4x+4>-4\)
\(4x-4+4>-4-4\)
\(4x-0>-4-4\)
\(4x>-4-4\)
\(4x>-8\)
\(\frac{4x}{4}>\frac{-8}{4}\)
\(\frac{1x}{1}>\frac{-8}{4}\)
\(1x>\frac{-8}{4}\)
\(x>\frac{-8}{4}\)
\(x>-\frac{8}{4}\)
\(x>-\frac{2}{1}\)
\(x>-2\)
Secondly solve for x in the second inequality.
\(2x-4≤-10\)
\(2x-4+4≤-10+4\)
\(2x-0≤-10+4\)
\(2x≤-10+4\)
\(2x≤-6\)
\(\frac{2x}{2}≤\frac{-6}{2}\)
\(\frac{1x}{1}≤\frac{-6}{2}\)
\(1x≤\frac{-6}{2}\)
\(x≤\frac{-6}{2}\)
\(x≤-\frac{6}{2}\)
\(x≤-\frac{3}{1}\)
\(x≤-3\)
Thirdly put both answers together with the word "or" in between.
\(x>-2\) or \(x≤-3\)
Forthly, put answer in interval notation.
\((-2,∞)\) or \((-∞,-3]\)
\((-∞,-3]\) or \((-2,∞)\)
Lastly, look at the list of A. B. C. and D. and figure out which one matches the answer.
A. (-∞,-3] or \((-2,∞)\)
\(4(x+1)>-4\) or \(2x-4≤-10\)
Firstly solve for x in the first inequality.
\(4(x+1)>-4\)
\(4x+4>-4\)
\(4x-4+4>-4-4\)
\(4x-0>-4-4\)
\(4x>-4-4\)
\(4x>-8\)
\(\frac{4x}{4}>\frac{-8}{4}\)
\(\frac{1x}{1}>\frac{-8}{4}\)
\(1x>\frac{-8}{4}\)
\(x>\frac{-8}{4}\)
\(x>-\frac{8}{4}\)
\(x>-\frac{2}{1}\)
\(x>-2\)
Secondly solve for x in the second inequality.
\(2x-4≤-10\)
\(2x-4+4≤-10+4\)
\(2x-0≤-10+4\)
\(2x≤-10+4\)
\(2x≤-6\)
\(\frac{2x}{2}≤\frac{-6}{2}\)
\(\frac{1x}{1}≤\frac{-6}{2}\)
\(1x≤\frac{-6}{2}\)
\(x≤\frac{-6}{2}\)
\(x≤-\frac{6}{2}\)
\(x≤-\frac{3}{1}\)
\(x≤-3\)
Thirdly put both answers together with the word "or" in between.
\(x>-2\) or \(x≤-3\)
Forthly, put answer in interval notation.
\((-2,∞)\) or \((-∞,-3]\)
\((-∞,-3]\) or \((-2,∞)\)
Lastly, look at the list of A. B. C. and D. and figure out which one matches the answer.
A. (-∞,-3] or \((-2,∞)\)