We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# What is the solution to the compound inequality in interval notation? 4(x+1)>−4  or  2x−4≤−10

0
1060
1

What is the solution to the compound inequality in interval notation? 4(x+1)>−4  or  2x−4≤−10

A. (−∞, −3] or (−2, ∞)

B. (−∞, −3] or (2, ∞)

C. (−∞, −2) or [3, ∞)

D. (−3, −2]

Aug 31, 2017

### Best Answer

#1
0

$$4(x+1)>-4$$ or $$2x-4≤-10$$

Firstly solve for x in the first inequality.

$$4(x+1)>-4$$

$$4x+4>-4$$

$$4x-4+4>-4-4$$

$$4x-0>-4-4$$

$$4x>-4-4$$

$$4x>-8$$

$$\frac{4x}{4}>\frac{-8}{4}$$

$$\frac{1x}{1}>\frac{-8}{4}$$

$$1x>\frac{-8}{4}$$

$$x>\frac{-8}{4}$$

$$x>-\frac{8}{4}$$

$$x>-\frac{2}{1}$$

$$x>-2$$

Secondly solve for x in the second inequality.

$$2x-4≤-10$$

$$2x-4+4≤-10+4$$

$$2x-0≤-10+4$$

$$2x≤-10+4$$

$$2x≤-6$$

$$\frac{2x}{2}≤\frac{-6}{2}$$

$$\frac{1x}{1}≤\frac{-6}{2}$$

$$1x≤\frac{-6}{2}$$

$$x≤\frac{-6}{2}$$

$$x≤-\frac{6}{2}$$

$$x≤-\frac{3}{1}$$

$$x≤-3$$

Thirdly put both answers together with the word "or" in between.

$$x>-2$$ or $$x≤-3$$

Forthly, put answer in interval notation.

$$(-2,∞)$$ or $$(-∞,-3]$$

$$(-∞,-3]$$ or $$(-2,∞)$$

Lastly, look at the list of A. B. C. and D. and figure out which one matches the answer.

A.  (-∞,-3] or $$(-2,∞)$$

.
Aug 31, 2017

### 1+0 Answers

#1
0
Best Answer

$$4(x+1)>-4$$ or $$2x-4≤-10$$

Firstly solve for x in the first inequality.

$$4(x+1)>-4$$

$$4x+4>-4$$

$$4x-4+4>-4-4$$

$$4x-0>-4-4$$

$$4x>-4-4$$

$$4x>-8$$

$$\frac{4x}{4}>\frac{-8}{4}$$

$$\frac{1x}{1}>\frac{-8}{4}$$

$$1x>\frac{-8}{4}$$

$$x>\frac{-8}{4}$$

$$x>-\frac{8}{4}$$

$$x>-\frac{2}{1}$$

$$x>-2$$

Secondly solve for x in the second inequality.

$$2x-4≤-10$$

$$2x-4+4≤-10+4$$

$$2x-0≤-10+4$$

$$2x≤-10+4$$

$$2x≤-6$$

$$\frac{2x}{2}≤\frac{-6}{2}$$

$$\frac{1x}{1}≤\frac{-6}{2}$$

$$1x≤\frac{-6}{2}$$

$$x≤\frac{-6}{2}$$

$$x≤-\frac{6}{2}$$

$$x≤-\frac{3}{1}$$

$$x≤-3$$

Thirdly put both answers together with the word "or" in between.

$$x>-2$$ or $$x≤-3$$

Forthly, put answer in interval notation.

$$(-2,∞)$$ or $$(-∞,-3]$$

$$(-∞,-3]$$ or $$(-2,∞)$$

Lastly, look at the list of A. B. C. and D. and figure out which one matches the answer.

A.  (-∞,-3] or $$(-2,∞)$$

gibsonj338 Aug 31, 2017