+0  
 
-1
668
6
avatar+194 

(deleted)

 Apr 17, 2020
edited by somehelpplease  May 8, 2020
 #1
avatar
+1

a=1; b=1;c=gcd((a^3+b^3)/(a+b), (a*b)); if(c==9 and a-b==6, goto4, goto5);printc, a, b; a++;if(a<100, goto2, 0);a=1;b++;if(b<100, goto2, discard=0;

 

OUTPUT:  a = 9   and   b = 3

 Apr 18, 2020
 #3
avatar+194 
+1

That was correct, thanks a bunch! Have a good day :D

somehelpplease  Apr 19, 2020
 #2
avatar+499 
+1

I'm not too savvy with number theory, but maybe you could try using the euclidean algorithm with this problem?

 Apr 18, 2020
 #4
avatar+194 
+1

I tried. . . believe me, I tried. Thanks for the suggestion anyway :D Have a nice day!

somehelpplease  Apr 19, 2020
 #5
avatar+118673 
+2

Suppose that a and b are positive integers such that a-b=6 and  \(\text{gcd}\left(\frac{a^3+b^3}{a+b}, ab\right) = 9 \) . Find the smallest possible value of b.

 

\(a-b=6\\ a=6+b\)

 

 

\(\text{gcd}\left(\frac{a^3+b^3}{a+b}, ab\right) = 9\\ \text{gcd}\left(\frac{(a+b)(a^2-ab+b^2)}{a+b}, ab\right) = 9\\ \text{gcd}\left((a^2-ab+b^2), ab\right) = 9\\ \text{gcd}\left((a^2-2ab+b^2+ab), ab\right) = 9\\ \text{gcd}\left(((a-b)^2+ab), ab\right) = 9\\ \text{gcd}\left((6^2+ab), ab\right) = 9\\ \text{gcd}\left((36+ab), ab\right) = 9\\ \text{gcd}\left(9(4+\frac{ab}{9}), ab\right) = 9\\ \text{gcd}\left((4+\frac{ab}{9}), \frac{ab}{9}\right) = 1\\\)

 

So ab is a multiple of 9 AND ab is not even  AND   \(\frac{ab}{9}\)  is not even

 

If ab=9 then gcd is correct, but there are not values of a and b exactly 6 units apart

If ab=27 then gcd is correct, and 9*3=27,   9-3=6

So the smallest values of a and b are   9 and 3 respectfully. 

 

The smallest value of b is 3.

 

 

 

 

LaTex:

\text{gcd}\left(\frac{a^3+b^3}{a+b}, ab\right) = 9\\
\text{gcd}\left(\frac{(a+b)(a^2-ab+b^2)}{a+b}, ab\right) = 9\\
\text{gcd}\left((a^2-ab+b^2), ab\right) = 9\\
\text{gcd}\left((a^2-2ab+b^2+ab), ab\right) = 9\\
\text{gcd}\left(((a-b)^2+ab), ab\right) = 9\\
\text{gcd}\left((6^2+ab), ab\right) = 9\\
\text{gcd}\left((36+ab), ab\right) = 9\\
\text{gcd}\left(9(4+\frac{ab}{9}), ab\right) = 9\\
\text{gcd}\left((4+\frac{ab}{9}), \frac{ab}{9}\right) = 1\\

 Apr 20, 2020
 #6
avatar+194 
+1

Thanks a lot, Melody :D Have a good day!

somehelpplease  Apr 24, 2020

2 Online Users

avatar