a=1; b=1;c=gcd((a^3+b^3)/(a+b), (a*b)); if(c==9 and a-b==6, goto4, goto5);printc, a, b; a++;if(a<100, goto2, 0);a=1;b++;if(b<100, goto2, discard=0;
OUTPUT: a = 9 and b = 3
I'm not too savvy with number theory, but maybe you could try using the euclidean algorithm with this problem?
I tried. . . believe me, I tried. Thanks for the suggestion anyway :D Have a nice day!
Suppose that a and b are positive integers such that a-b=6 and \(\text{gcd}\left(\frac{a^3+b^3}{a+b}, ab\right) = 9 \) . Find the smallest possible value of b.
\(a-b=6\\ a=6+b\)
\(\text{gcd}\left(\frac{a^3+b^3}{a+b}, ab\right) = 9\\ \text{gcd}\left(\frac{(a+b)(a^2-ab+b^2)}{a+b}, ab\right) = 9\\ \text{gcd}\left((a^2-ab+b^2), ab\right) = 9\\ \text{gcd}\left((a^2-2ab+b^2+ab), ab\right) = 9\\ \text{gcd}\left(((a-b)^2+ab), ab\right) = 9\\ \text{gcd}\left((6^2+ab), ab\right) = 9\\ \text{gcd}\left((36+ab), ab\right) = 9\\ \text{gcd}\left(9(4+\frac{ab}{9}), ab\right) = 9\\ \text{gcd}\left((4+\frac{ab}{9}), \frac{ab}{9}\right) = 1\\\)
So ab is a multiple of 9 AND ab is not even AND \(\frac{ab}{9}\) is not even
If ab=9 then gcd is correct, but there are not values of a and b exactly 6 units apart
If ab=27 then gcd is correct, and 9*3=27, 9-3=6
So the smallest values of a and b are 9 and 3 respectfully.
The smallest value of b is 3.
LaTex:
\text{gcd}\left(\frac{a^3+b^3}{a+b}, ab\right) = 9\\
\text{gcd}\left(\frac{(a+b)(a^2-ab+b^2)}{a+b}, ab\right) = 9\\
\text{gcd}\left((a^2-ab+b^2), ab\right) = 9\\
\text{gcd}\left((a^2-2ab+b^2+ab), ab\right) = 9\\
\text{gcd}\left(((a-b)^2+ab), ab\right) = 9\\
\text{gcd}\left((6^2+ab), ab\right) = 9\\
\text{gcd}\left((36+ab), ab\right) = 9\\
\text{gcd}\left(9(4+\frac{ab}{9}), ab\right) = 9\\
\text{gcd}\left((4+\frac{ab}{9}), \frac{ab}{9}\right) = 1\\