Questions   
Sort: 
 #2
avatar+26387 
+2

Find the value of k so that
\(3 + \dfrac{3 + k}{4} + \dfrac{3 + 2k}{4^2} + \dfrac{3 + 3k}{4^3} + \dotsb = 8\).

 

\(\begin{array}{|rcll|} \hline 3*1 + (3 + k)\left(1*\frac{1}{4}\right) + (3 + 2k)\left(1* \frac{1}{4^2} \right) + (3 + 3k)\left(1* \frac{1}{4^3} \right) + \dotsb + (3 + (n-1)k)\left(1*\left(\frac{1}{4}\right)^{n-1}\right) + \dotsb = 8 \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \text{arithmetical sequence:} \\ {\color{red}3}+({\color{red}3}+k)+({\color{red}3}+2k)+({\color{red}3}+3k)+\dotsb \\ \boxed{a={\color{red}3},\ k \text{ is the common difference} } \\\\ \text{geometric series:} \\ {\color{blue}1}+{\color{blue}1}*{\color{green}\frac{1}{4}}+{\color{blue}1}*({\color{green}\frac{1}{4}})^2+{\color{blue}1}*({\color{green}\frac{1}{4}})^3+\dotsb \\ \boxed{ b={\color{blue}1},\ r={\color{green}\frac{1}{4}}\ \text{ is the common ratio} } \\ \hline \end{array}\)

 

The sum  of the first n terms of an arithmetico–geometric sequence has the form:

\(\begin{array}{|rcll|} \hline \mathbf{s_n} &=& \mathbf{ \dfrac{ ab-(a+nk)br^n} {1-r} + \dfrac{kbr(1-r^n)} {(1-r)^2}} \\ &&\boxed{a=3,\ b=1,\ r=\frac{1}{4}} \\\\ &=& \dfrac{3*1-(3+nk)*1*\frac{1}{4^n}}{1-\frac{1}{4}} + \frac{ k*1*\frac{1}{4}(1-\frac{1}{4^n})} { (1-\frac{1}{4})^2 } \\\\ &=&\frac{4}{3}\left( 3-\frac{3}{4^n}-\frac{nk}{4^n} \right) +\frac{16}{9}\left( \frac{k}{4}-\frac{k}{4*4^n} \right) \\\\ &=& 4-\frac{1}{4^{n-1}}-\frac{nk}{3*4^{n-1}} + \frac{4}{9}k-\frac{k}{4*4^n}*\frac{4*4}{9} \\\\ &=& 4-\frac{1}{4^{n-1}}-\frac{nk}{3*4^{n-1}} + \frac{4}{9}k-\frac{k}{9*4^{n-1}} \\\\ &=& 4+ \frac{4}{9}k -\frac{1}{4^{n-1}}\left(1+\frac{nk}{3}+\frac{k}{9}\right) \\ &&\boxed{\lim \limits_{n\to\infty} \frac{1}{4^{n-1}}\left(1+\frac{nk}{3}+\frac{k}{9}\right)=0} \\ 8 &=& 4+ \frac{4}{9}k \\ 4 &=& \frac{4}{9}k \quad | \quad : 4 \\ 1 &=& \frac{1}{9}k \quad | \quad * 9 \\ 9 &=& k \\ \mathbf{k} &=& \mathbf{9} \\ \hline \end{array}\)

 

Formula:

infinite arithmetico–geometric sequence

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+k\left( \dfrac{r}{1-r} \right) \Bigg)} \\ \hline \end{array}\)

 

laugh

Feb 16, 2020
 #8
avatar+118667 
0
Feb 16, 2020
 #3
avatar+118667 
0
Feb 16, 2020
 #1
avatar
+1

 

If you buy 7 hamburgers and 3 slices of pizza from the Sizzler, you get Sl in change back from a
$20 bill. If you buy 8 hamburgers and 2 slices of pizza, you get $0.50 back from a $20 bill. Find
the price of a hamburger and the price of a slice of pizza.
  

 

See the part I highlighted in blue?  Sl doesn't make sense, so I'm going to assume you meant $1. 

 

Let H stand for the price in $ of a hamburger, and

Let P stand for the price in $ of a slice of pizza. 

 

So                                    7H + 3P  =  20 – 1       =  19.00 

and                                  8H + 2P  =  20 – 0.50  =  19.50 

 

Multiply both sides of the 1st equation by 2 and get       14H + 6P  =  38.00 

Multiply both sides of the 2nd equation by 3 and get      24H + 6P  =  58.50 

 

Subtract the fourth equation from the third and get       –10H  =  –20.50  

Divide both sides of this equation by –10 and get               H  =  2.05 

 

Plug 2.05 into the first equation in place of H                   (7)•(2.05) + 3P  =  19.00 

                                                                                                            3P  =  19.00 – 14.35  =  4.65 

                                                                                                              P  =  1.55 

 

.

Feb 16, 2020
 #3
avatar+865 
+1
Feb 16, 2020
 #1
avatar+865 
+1
Feb 16, 2020

1 Online Users

avatar