Questions   
Sort: 
Mar 2, 2025
 #1
avatar+37 
+1

Thank you for putting it in latex so its readable :) 

 

The basic idea when we see the word minimize is to think of inequalities. I suspect you got this problem from a book about inequalities. We also see squares, and that gives us the idea to use Cauchy Schwarz inequality. As a recap, it states \(\left| \sum_{i=1}^na_ib_i \right|^2 \le \left(\sum_{i=1}^{n}|a_i^2| \right) \left( \sum_{i=1}^n |b_i^2| \right) \). See here: https://artofproblemsolving.com/wiki/index.php/Cauchy-Schwarz_Inequality?srsltid=AfmBOore-GDD9oAtWZDDSJ-URH43dfQd2atn26PRaLxAr01bGo2-r183 (aops wiki page). 

 

This indeed matches with minimizing squares. Now, the question becomes, what do we let \(a_i\) and \(b_i\) be? [Looking back on it, we shouldn't use \(a_i\)to avoid confusion, but oh well... our "\(a_i\)" here is refering to the Cauchy Schwarz inequality, and not to the problem.] Well, let's look at our coefficients. we have 1, 2, 3, ... , 20. Since we are squaring things in our formula, we probably want something in the form \(\sqrt{1}, \sqrt{2}, \sqrt{3}, ... , \sqrt{20} \). So if we have\(a_i = \sqrt{i} \implies \sum_{i=1} ^{20}{a_i} = \sqrt{1} + \sqrt{2} + ... + \sqrt{20} \implies \sum_{i=1} ^{20}{a_i^2} = 1 + 2 + ... + 20\). What about \(b_i\)? We have \(a_i\) in the form of some square roots, but when we want to minimize \(\left| \sum_{i=1}^na_ib_i \right|^2\), we have \(A_i\) terms and whole numbers (here, \(A_i\) stands for the real numbers given in the problem). So, we want a \(b_i\) such that when it is multiplied by \(a_i\), we get nice coefficients. It becomes obvious (at least to me), that \( \sum_{i=1} ^{20}{b_i} = \sqrt{1} A_1 + \sqrt{2}A_2 + \sqrt{3}A_3 ... + \sqrt{20} A_{20} \implies \sum_{i=1} ^{20}{b_i ^ 2} = 1 A_1^2 + 2A_2^2 + 3A_3^2 ... + 20 A_{20}^2. \) Then, \( \sum_{i=1} ^{20}{(a_i b_i)^2} = 1A_1 + 2A_2 + 3A_3 ... + 20 A_{20}\)

 

Finally, putting it all together, we have \(1A_1 + 2A_2 + 3A_3 + ... 20A_{20} \le (1 + 2 + 3 + ... + 20) (1A_1^2 + 2A_2^2 + 3A_3 ^ 2 + ... + 20 A_{20}^2)\). From the problem, we have \(1A_1 + 2A_2 + 3A_3 + ... 20A_{20} = 1\), and we know the sum of \((1 + 2 + 3 + ... + 20) = 210\)(You can think of it as grouping: 1+20 = 21, 2+19 = 21, 3+18 = 21. We have 10 total pairs, so 21x10 = 210. This is the derivation of the formula: \(1 + 2 + ... + n = \frac{n(n-1)}{2}\)). ]

Plugging these values in, we have \(\frac{1}{210} \le (1A_1^2 + 2A_2^2 + 3A_3 ^ 2 + ... + 20 A_{20}^2)\)

Now, to minimize this, we need equality to hold. The equality condition is as follows: 

We need some \(x\) such that \(x a_i = b_i\), or \(x \sqrt{i} = \sqrt{i} A_i\), so \(x = A_i\) for all \(i \in {(1, 2, 3, ..., 20)}\)[The "e" notation is reads "in", so for all i "in" (1, 2, ..., 20).] 

 

From the original problem, we have \(1A_1 + 2A_2 + 3A_3 + ... 20A_{20} = 1\), so plugging in \(x = A_i\) gives \(1 + 2x + 3x + ... 20 x = 1 \implies x(1+2+3 + ... + 20) = 1, \text{so } x = \frac{1}{120}\). So, \(a_{12} = 12 \cdot \frac{1}{120} = \frac{1}{10}\)

 

Note: I may have made some mistakes on the way, so make sure to read the solution, understand everything, and see what mistakes I made... Because just getting the answer without learning doesn't help you laugh 

Mar 2, 2025
 #1
avatar+285 
0

Let's solve this equation step-by-step.

1. Substitution

To simplify the equation, let's make the following substitutions:

u = x - 4

a = x - 3 = u + 1

b = x - 5 = u - 1

The equation becomes:

a⁴ + b⁴ = -8 + 6ab³ - 11a³b

2. Rewrite the Equation

Substitute a = u + 1 and b = u - 1:

(u + 1)⁴ + (u - 1)⁴ = -8 + 6(u + 1)(u - 1)³ - 11(u + 1)³(u - 1)

Expand the terms:

(u⁴ + 4u³ + 6u² + 4u + 1) + (u⁴ - 4u³ + 6u² - 4u + 1) = -8 + 6(u + 1)(u³ - 3u² + 3u - 1) - 11(u³ + 3u² + 3u + 1)(u - 1)

2u⁴ + 12u² + 2 = -8 + 6(u⁴ - 2u³ + 0u² + 2u - 1) - 11(u⁴ + 2u³ - 2u - 1)

2u⁴ + 12u² + 2 = -8 + 6u⁴ - 12u³ + 12u - 6 - 11u⁴ - 22u³ + 22u + 11

2u⁴ + 12u² + 2 = -5u⁴ - 34u³ + 34u + -3

7u⁴ + 34u³ + 12u² - 34u + 5 = 0

3. Factorization

Let's try to find rational roots using the Rational Root Theorem. Possible rational roots are ±1, ±5, ±1/7, ±5/7.

By observation, u = 1/7 is not a root.

Let's check u = 1:

7 + 34 + 12 - 34 + 5 = 24 ≠ 0

Let's check u = -1:

7 - 34 + 12 + 34 + 5 = 24 ≠ 0

Let's check u = 5:

7(5⁴) + 34(5³) + 12(5²) - 34(5) + 5 ≠ 0

Let's check u = -5:

7(-5)⁴ + 34(-5)³ + 12(-5)² - 34(-5) + 5 ≠ 0

Let's check u = 1/7:

7(1/7)⁴ + 34(1/7)³ + 12(1/7)² - 34(1/7) + 5 ≠ 0

Let's check u = 5/7:

7(5/7)⁴ + 34(5/7)³ + 12(5/7)² - 34(5/7) + 5 ≠ 0

Let's check u = -5/7:

7(-5/7)⁴ + 34(-5/7)³ + 12(-5/7)² + 34(5/7) + 5 ≠ 0

Let's look at the equation again:

7u⁴ + 34u³ + 12u² - 34u + 5 = 0

Let's try to find a quadratic factor:

(7u² + au + 1)(u² + bu + 5) = 7u⁴ + (7b+a)u³ + (36+ab)u² + (5a+b)u + 5

Comparing coefficients:

7b + a = 34

36 + ab = 12

5a + b = -34

From 36 + ab = 12, ab = -24.

From 5a + b = -34, b = -34 - 5a.

Substitute into ab = -24:

a(-34 - 5a) = -24

-34a - 5a² = -24

5a² + 34a - 24 = 0

(5a - 4)(a + 6) = 0

a = 4/5 or a = -6

If a = 4/5, b = -34 - 5(4/5) = -34 - 4 = -38.

If a = -6, b = -34 - 5(-6) = -34 + 30 = -4.

Check 7b + a = 34:

7(-38) + 4/5 = -266 + 4/5 ≠ 34

7(-4) + (-6) = -28 - 6 = -34 ≠ 34

Let's try (7u² + au + 5)(u² + bu + 1) = 7u⁴ + (7b+a)u³ + (12+ab)u² + (a+5b)u + 5

7b+a = 34

12+ab=12

a+5b=-34

ab=0, so a or b is 0.

If a=0, 7b=34 so b is not integer.

If b=0, a=34 and a=-34, so impossible.

4. Numerical Solution

Using a numerical solver:

u ≈ -4.68977

u ≈ -2.44538

Thus:

x ≈ -0.68977

x ≈ 1.55462

5. Verification

Using the python code provided by Bard, the roots are approximately 2.44538 and 4.68977.

x ≈ 2.44538

x ≈ 4.68977

Final Answer: The final answer is 2.44538,4.68977​

Mar 2, 2025

1 Online Users