Questions   
Sort: 
 #1
avatar+23251 
0

Solve for  x  and  y:                                x2 - 11x - y  =  -24

                                                              x2 - 11x + y  =  -24

Add down the columns:                       2x2 - 22x       =  -48

Divide by 2:                                           x2 - 11x        =  -24

Add 24 to both sides:                          x2 - 11x + 24  =  0

Factor:                                                 (x - 8)(x - 3)  =  0

Solve:                                                 x  =  8     or     x  =  3

 

Replace  x  in the first equation:  x2 - 11x - y  =  -24

                                               (8)2 - 11(8) - y  =  -24               (3)2 - 11(3) - y  =  -24

                                                     64 - 88 - y  =  -24                        9 - 33 - y  =  -24      

                                                           -24 - y  =  -24                            -24 - y  =  -24

                                                                  -y  =  0                                       -y  =  0

                                                                   y  =  0                                         y  =  0

                                                           --->     (8, 0)                                 --->   (3, 0)

 

You would have gotten the same  y-values had you replaced  x  in the second equation.

Aug 28, 2016
Aug 27, 2016
 #1
avatar+129840 
+5

I'm not too sure about this, but I don't believe any such numbers exist......here's my reasoning :

 

Let the 4 digits  be a , b, c and d    

 

And assume that each digit, except a, can only have a possible range of 0 - 9, inclusive  [a only ranges from 1 - 9, inclusive]

 

So we have  that

 

a + b + c + d   = 9    

 

Rearrange this as   (a + c) + ( b + d)  = 9      (1)

 

And it can be shown that if  the alternating sums of a 4 digit number equal some multiple of 11 (or, 0)...then that number is divisible by 11

 

For instance   1331.....we have  1 - 3 + 3 - 1  =  -2 + 2 =  0     and 1331  =  11^3

Or, for instance,  9141    .....we have   9 -1 + 4 - 1  =  8 + 3  = 11   and 9141  = 831 * 11

 

So.... our 4 digit number is divisible by 11  if    ( a - b) + (c - d ) = 11n    where n is an integer

 

Rearranging this, we have     (a + c) - (b + d)  = 11n        (2)

 

Adding (1)  and (2)   we have that

 

2(a + c)  =  11n + 9 

 

Now......the left side is even, so n must be odd...now, let n = 1.....then

 

2(a + c)  = 11(1) + 9

2 (a + c)  = 20

a + c  = 10

But this means that, by  (1),  10 + ( b + d ) = 9  → ( b + d) = -1.....but, since b, d can only range from 0-9, this is impossible

 

And we can clearly see that if n is any odd integer > 1, then a + c > 10  which by (1), makes (b + d) negative. And this violates our assumption that b, d can only range for 0-9, inclusive.

 

And n cannot be any negative odd, either....for instance, if n = -1

 

2(a + c)  = 11(-1) + 9

2(a + c)  = -2

a + c = -1    and this is also impossible, by our assumption

And for any negative odd > 1, (a + c) < -1 which also violates our assumption

 

Thus, no "n" exists that makes (1) and (2) both true, so there is no 4 digit number that will sum to 9 and also be divisible by 11

 

P.S. - I'd like some other mathematician(s) to look at this.......!!!!

 

 

 

cool cool cool

Aug 27, 2016
 #1
avatar
0

Expand the following:
(x/2+t)^4

 

(t+x/2)^4 = sum_(k=0)^4 binomial(4, k) (x/2)^(4-k) t^k = binomial(4, 0) (x/2)^4 t^0+binomial(4, 1) (x/2)^3 t^1+binomial(4, 2) (x/2)^2 t^2+binomial(4, 3) (x/2)^1 t^3+binomial(4, 4) (x/2)^0 t^4:
(binomial(4, 0) x^4)/16+1/8 binomial(4, 1) t x^3+1/4 binomial(4, 2) t^2 x^2+1/2 binomial(4, 3) t^3 x+binomial(4, 4) t^4

 

binomial(4, 0) = 1, binomial(4, 1) = 4, binomial(4, 2) = 6, binomial(4, 3) = 4 and binomial(4, 4) = 1:
t^4+(4 t^3 x)/2+6 t^2 (x/2)^2+4 t (x/2)^3+(x/2)^4

 

4/2 = (2×2)/2 = 2:
t^4+2 t^3 x+6 t^2 (x/2)^2+4 t (x/2)^3+(x/2)^4

 

Multiply each exponent in x/2 by 2:
t^4+2 t^3 x+6 t^2 (1/2)^2 x^2+4 t (x/2)^3+(x/2)^4

 

(1/2)^2 = 1^2/2^2:
t^4+2 t^3 x+1^2/2^2 6 t^2 x^2+4 t (x/2)^3+(x/2)^4

 

1^2 = 1:
t^4+2 t^3 x+(6 t^2 x^2)/2^2+4 t (x/2)^3+(x/2)^4

 

2^2 = 4:
t^4+2 t^3 x+(6 t^2 x^2)/4+4 t (x/2)^3+(x/2)^4

 

The gcd of 6 and 4 is 2, so (t^2 x^2×6)/4 = ((2×3) t^2 x^2)/(2×2) = 2/2×(3 t^2 x^2)/2 = (3 t^2 x^2)/2:
t^4+2 t^3 x+(3 t^2 x^2)/2+4 t (x/2)^3+(x/2)^4

 

Multiply each exponent in x/2 by 3:
t^4+2 t^3 x+(3 t^2 x^2)/2+4 t (1/2)^3 x^3+(x/2)^4

 

(1/2)^3 = 1^3/2^3:
t^4+2 t^3 x+(3 t^2 x^2)/2+1^3/2^3 4 t x^3+(x/2)^4

 

1^3 = 1:
t^4+2 t^3 x+(3 t^2 x^2)/2+(4 t x^3)/2^3+(x/2)^4

 

2^3 = 2×2^2:
t^4+2 t^3 x+(3 t^2 x^2)/2+(4 t x^3)/2×2^2+(x/2)^4

 

2^2 = 4:
t^4+2 t^3 x+(3 t^2 x^2)/2+(4 t x^3)/(2×4)+(x/2)^4

 

2×4 = 8:
t^4+2 t^3 x+(3 t^2 x^2)/2+(4 t x^3)/8+(x/2)^4

 

4/8 = 4/(4×2) = 1/2:
t^4+2 t^3 x+(3 t^2 x^2)/2+(t x^3)/2+(x/2)^4

 

Multiply each exponent in x/2 by 4:
t^4+2 t^3 x+(3 t^2 x^2)/2+(t x^3)/2+(1/2)^4 x^4

 

(1/2)^4 = 1^4/2^4:
t^4+2 t^3 x+(3 t^2 x^2)/2+(t x^3)/2+1^4/2^4 x^4

 

1^4 = 1:
t^4+2 t^3 x+(3 t^2 x^2)/2+(t x^3)/2+x^4/2^4

 

2^4 = (2^2)^2:
t^4+2 t^3 x+(3 t^2 x^2)/2+(t x^3)/2+x^4/(2^2)^2

 

2^2 = 4:
t^4+2 t^3 x+(3 t^2 x^2)/2+(t x^3)/2+x^4/4^2

 

4^2 = 16:
Answer: |t^4 + 2t^3 x + (3t^2x^2)/2 +( tx^3)/2 + x^4/16

Aug 27, 2016

4 Online Users

avatar
avatar
avatar