Questions   
Sort: 
 #1
avatar
0
Jan 31, 2017
 #1
avatar+31 
+5
Jan 31, 2017
 #4
avatar
0
Jan 31, 2017
 #3
avatar
0

YEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE is the answer.

Jan 31, 2017
 #1
avatar
0
Jan 31, 2017
 #1
avatar
0

After doing years of research ive come to the conclusion that the missing numer is....1.

Now you may not believe me but here is my latest novel, read this and see if it will help you

 

 

Physics

From Wikipedia, the free encyclopedia

This article is about the field of science. For other uses, see Physics (disambiguation).

Not to be confused with Physical science.

Various examples of physical phenomena

Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) "knowledge of nature", from φύσις phúsis "nature"[1][2][3]) is the natural science that involves the study of matter[4] and its motion and behavior through space and time, along with related concepts such as energy and force.[5] One of the most fundamental scientific disciplines, the main goal of physics is to understand how the universe behaves.[a][6][7][8]

Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy.[9] Over the last two millennia, physics was a part of natural philosophy along with chemistry, biology, and certain branches of mathematics, but during the scientific revolution in the 17th century, the natural sciences emerged as unique research programs in their own right.[b] Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences[6] while opening new avenues of research in areas such as mathematics and philosophy.

Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products that have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons;[6] advances in thermodynamics led to the development of industrialization, and advances in mechanics inspired the development of calculus.

The United Nations named 2005 the World Year of Physics.

Contents

  [hide] 1History

1.1Ancient astronomy

1.2Natural philosophy

1.3Physics in the medieval Islamic world

1.4Classical physics

1.5Modern physics

2Philosophy

3Core theories

3.1Classical physics

3.2Modern physics

3.3Difference between classical and modern physics

4Relation to other fields

4.1Prerequisites

4.2Application and influence

5Research

5.1Scientific method

5.2Theory and experiment

5.3Scope and aims

5.4Research fields

5.4.1Particle physics

5.4.2Atomic, molecular, and optical physics

5.4.3Condensed matter physics

5.4.4Astrophysics

6Current research

7See also

8Notes

9References

10Sources

11Further reading

12External links

History

Main article: History of physics

Ancient astronomy

Main article: History of astronomy

Ancient Egyptian astronomy is evident in monuments like the ceiling of Senemut's tomb from the Eighteenth Dynasty of Egypt.

Astronomy is the oldest of the natural sciences. The earliest civilizations dating back to beyond 3000 BCE, such as the Sumerians, ancient Egyptians, and the Indus Valley Civilization, all had a predictive knowledge and a basic understanding of the motions of the Sun, Moon, and stars. The stars and planets were often a target of worship, believed to represent their gods. While the explanations for these phenomena were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy.[9]

According to Asger Aaboe, the origins of Western astronomy can be found in Mesopotamia, and all Western efforts in the exact sciences are descended from late Babylonian astronomy.[11] Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies,[12] while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey; later Greek astronomers provided names, which are still used today, for most constellations visible from the northern hemisphere.[13]

Natural philosophy

Main article: Natural philosophy

Natural philosophy has its origins in Greece during the Archaic period, (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause.[14] They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment;[15] for example, atomism was found to be correct approximately 2000 years after it was first proposed by Leucippus and his pupil Democritus.[16]

Physics in the medieval Islamic world

Main article: Physics in the medieval Islamic world

The basic way a pinhole camera works

Islamic scholarship had inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method.

The most notable innovations were in the field of optics and vision, which came from the works of many scientists like Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi and Avicenna. The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn Al-Haitham, in which he was not only the first to disprove the ancient Greek idea about vision, but also came up with a new theory. In the book, he was also the first to study the phenomenon of the pinhole camera and delved further into the way the eye itself works. Using dissections and the knowledge of previous scholars, he was able to begin to explain how light enters the eye, is focused, and is projected to the back of the eye: and built then the world's first camera obscura hundreds of years before the modern development of photography.[17]

Ibn al-Haytham (c. 965 - c. 1040), the pioneer of optics

The seven-volume Book of Optics (Kitab al-Manathir) hugely influenced thinking across disciplines from the theory of visual perception to the nature of perspective in medieval art, in both the East and the West, for more than 600 years. Many later European scholars and fellow polymaths, from Robert Grosseteste and Leonardo da Vinci to René Descartes, Johannes Kepler and Isaac Newton, were in his debt. Indeed, the influence of Ibn al-Haytham's Optics ranks alongside that of Newton's work of the same title, published 700 years later.

The translation of The Book of Optics had a huge impact on Europe. From it, later European scholars were able to build the same devices as what Ibn al-Haytham did, and understand the way light works. From this, such important things as eyeglasses, magnifying glasses, telescopes, and cameras were developed.

Classical physics

Main article: Classical physics

Sir Isaac Newton (1643–1727), whose laws of motion and universal gravitation were major milestones in classical physics

Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.[18][page needed]

Major developments in this period include the replacement of the geocentric model of the solar system with the heliocentric Copernican model, the laws governing the motion of planetary bodies determined by Johannes Kepler between 1609 and 1619, pioneering work on telescopes and observational astronomy by Galileo Galilei in the 16th and 17th Centuries, and Isaac Newton's discovery and unification of the laws of motion and universal gravitation that would come to bear his name.[19]Newton also developed calculus,[c] the mathematical study of change, which provided new mathematical methods for solving physical problems.[20]

The discovery of new laws in thermodynamics, chemistry, and electromagnetics resulted from greater research efforts during the Industrial Revolution as energy needs increased.[21] The laws comprising classical physics remain very widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a very close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. However, inaccuracies in classical mechanics for very small objects and very high velocities led to the development of modern physics in the 20th century.

Modern physics

Main article: Modern physics

See also: History of special relativity and History of quantum mechanics

Albert Einstein (1879–1955), whose work on the photoelectric effect and the theory of relativity led to a revolution in 20th century physics

Max Planck (1858–1947), the originator of the theory of quantum mechanics

Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted a varying speed of light, which could not be resolved with the constant speed predicted by Maxwell's equations of electromagnetism; this discrepancy was corrected by Einstein's theory of special relativity, which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light.[22] Black body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency; this, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals, led to the theory of quantum mechanics taking over from classical physics at very small scales.[23]

Quantum mechanics would come to be pioneered by Werner Heisenberg, Erwin Schrödinger and Paul Dirac.[23] From this early work, and work in related fields, the Standard Model of particle physics was derived.[24] Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012,[25] all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model, with theories such as supersymmetry, is an active area of research.[26] Areas of mathematics in general are important to this field, such as the study of probabilities and groups.

Philosophy

Main article: Philosophy of physics

In many ways, physics stems from ancient Greek philosophy. From Thales' first attempt to characterise matter, to Democritus' deduction that matter ought to reduce to an invariant state, the Ptolemaic astronomy of a crystalline firmament, and Aristotle's book Physics (an early book on physics, which attempted to analyze and define motion from a philosophical point of view), various Greek philosophers advanced their own theories of nature. Physics was known as natural philosophy until the late 18th century.[27]

By the 19th century, physics was realised as a discipline distinct from philosophy and the other sciences. Physics, as with the rest of science, relies on philosophy of science and its "scientific method" to advance our knowledge of the physical world.[28] The scientific method employs a priori reasoning as well as a posteriori reasoning and the use of Bayesian inference to measure the validity of a given theory.[29]

The development of physics has answered many questions of early philosophers, but has also raised new questions. Study of the philosophical issues surrounding physics, the philosophy of physics, involves issues such as the nature of space and time, determinism, and metaphysical outlooks such as empiricism, naturalism and realism.[30]

Many physicists have written about the philosophical implications of their work, for instance Laplace, who championed causal determinism,[31] and Erwin Schrödinger, who wrote on quantum mechanics.[32][33] The mathematical physicist Roger Penrose has been called a Platonist by Stephen Hawking,[34] a view Penrose discusses in his book, The Road to Reality.[35] Hawking refers to himself as an "unashamed reductionist" and takes issue with Penrose's views.[36]

Core theories

Further information: Branches of physics and Outline of physics

Though physics deals with a wide variety of systems, certain theories are used by all physicists. Each of these theories were experimentally tested numerous times and found to be an adequate approximation of nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These theories continue to be areas of active research today. Chaos theory, a remarkable aspect of classical mechanics was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Isaac Newton (1642–1727).

These central theories are important tools for research into more specialised topics, and any physicist, regardless of their specialisation, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.

Classical physics

Main article: Classical physics

Classical physics implemented in an acoustic engineering model of sound reflecting from an acoustic diffuser

Classical physics includes the traditional branches and topics that were recognised and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism. Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies not subject to an acceleration), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter include such branches as hydrostatics, hydrodynamics, aerodynamics, and pneumatics. Acoustics is the study of how sound is produced, controlled, transmitted and received.[37] Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics, the physics of animal calls and hearing,[38] and electroacoustics, the manipulation of audible sound waves using electronics.[39]

Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field, and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.

Modern physics

Main article: Modern physics

Modern physics

{\displaystyle {\hat {H}}|\psi _{n}(t)\rangle =i\hbar {\frac {\partial }{\partial t}}|\psi _{n}(t)\rangle }
{\displaystyle {\frac {1}{{c}^{2}}}{\frac {{\partial }^{2}{\phi }_{n}}{{\partial t}^{2}}}-{{\nabla }^{2}{\phi }_{n}}+{\left({\frac {mc}{\hbar }}\right)}^{2}{\phi }_{n}=0}

Manifold Dynamics: Schrödinger and Klein-Gordon equations

Founders[show]

Concepts[show]

Branches[show]

Scientists[show]

v

t

e

Solvay Conference of 1927, with prominent physicists such as Albert Einstein, Werner Heisenberg, Max Planck, Hendrik Lorentz, Niels Bohr, Marie Curie, Erwin Schrödinger and Paul Dirac

Classical physics is generally concerned with matter and energy on the normal scale of observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified. The physics of elementary particles is on an even smaller scale since it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid.[40]

The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics. Classical mechanics approximates nature as continuous, while quantum theory is concerned with the discrete nature of many phenomena at the atomic and subatomic level and with the complementary aspects of particles and waves in the description of such phenomena. The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with relative uniform motion in a straight line and the general theory of relativity with accelerated motion and its connection with gravitation. Both quantum theory and the theory of relativity find applications in all areas of modern physics.[41]

Difference between classical and modern physics

The basic domains of physics

While physics aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match predictions provided by classical mechanics. Albert Einstein contributed the framework of special relativity, which replaced notions of absolute time and space with spacetime and allowed an accurate description of systems whose components have speeds approaching the speed of light. Max Planck, Erwin Schrödinger, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales. Later, quantum field theory unified quantum mechanics and special relativity. General relativity allowed for a dynamical, curved spacetime, with which highly massive systems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.

Relation to other fields

This parabola-shaped lava flow illustrates the application of mathematics in physics—in this case, Galileo's law of falling bodies.

Mathematics and ontology are used in physics. Physics is used in chemistry and cosmology.

Prerequisites

Mathematics provides a compact and exact language used to describe of the order in nature. This was noted and advocated by Pythagoras,[42] Plato,[43] Galileo,[44] and Newton.

Physics uses mathematics[45] to organise and formulate experimental results. From those results, precise or estimated solutions, quantitative results from which new predictions can be made and experimentally confirmed or negated. The results from physics experiments are numerical measurements. Technologies based on mathematics, like computation have made computational physics an active area of research.

The distinction between mathematics and physics is clear-cut, but not always obvious, especially in mathematical physics.

Ontology is a prerequisite for physics, but not for mathematics. It means physics is ultimately concerned with descriptions of the real world, while mathematics is concerned with abstract patterns, even beyond the real world. Thus physics statements are synthetic, while mathematical statements are analytic. Mathematics contains hypotheses, while physics contains theories. Mathematics statements have to be only logically true, while predictions of physics statements must match observed and experimental data.

The distinction is clear-cut, but not always obvious. For example, mathematical physics is the application of mathematics in physics. Its methods are mathematical, but its subject is physical.[46] The problems in this field start with a "mathematical model of a physical situation" (system) and a "mathematical description of a physical law" that will be applied to that system. Every mathematical statement used for solving has a hard-to-find physical meaning. The final mathematical solution has an easier-to-find meaning, because it is what the solver is looking for.[clarification needed]

Physics is a branch of fundamental science, not practical science. Physics is also called "the fundamental science" because the subject of study of all branches of natural science like chemistry, astronomy, geology, and biology are constrained by laws of physics,[47] similar to how chemistry is often called the central science because of its role in linking the physical sciences. For example, chemistry studies properties, structures, and reactions of matter (chemistry's focus on the atomic scale distinguishes it from physics). Structures are formed because particles exert electrical forces on each other, properties include physical characteristics of given substances, and reactions are bound by laws of physics, like conservation of energy, mass, and charge.

Physics is applied in industries like engineering and medicine.

Application and influence

Main article: Applied physics

Archimedes' s***w, a simple machine for lifting

The application of physical laws in lifting liquids

Applied physics is a general term for physics research which is intended for a particular use. An applied physics curriculum usually contains a few classes in an applied discipline, like geology or electrical engineering. It usually differs from engineering in that an applied physicist may not be designing something in particular, but rather is using physics or conducting physics research with the aim of developing new technologies or solving a problem.

The approach is similar to that of applied mathematics. Applied physicists use physics in scientific research. For instance, people working on accelerator physics might seek to build better particle detectors for research in theoretical physics.

Physics is used heavily in engineering. For example, statics, a subfield of mechanics, is used in the building of bridges and other static structures. The understanding and use of acoustics results in sound control and better concert halls; similarly, the use of optics creates better optical devices. An understanding of physics makes for more realistic flight simulators, video games, and movies, and is often critical in forensic investigations.

With the standard consensus that the laws of physics are universal and do not change with time, physics can be used to study things that would ordinarily be mired in uncertainty. For example, in the study of the origin of the earth, one can reasonably model earth's mass, temperature, and rate of rotation, as a function of time allowing one to extrapolate forward or backward in time and so predict future or prior events. It also allows for simulations in engineering which drastically speed up the development of a new technology.

But there is also considerable interdisciplinarity in the physicist's methods, so many other important fields are influenced by physics (e.g., the fields of econophysics and sociophysics).

Research

Scientific method

Physicists use the scientific method to test the validity of a physical theory. By using a methodical approach to compare the implications of a theory with the conclusions drawn from its related experiments and observations, physicists are better able to test the validity of a theory in a logical, unbiased, and repeatable way. To that end, experiments are performed and observations are made in order to determine the validity or invalidity of the theory.[48]

A scientific law is a concise verbal or mathematical statement of a relation which expresses a fundamental principle of some theory, such as Newton's law of universal gravitation.[49]

Theory and experiment

Main articles: Theoretical physics and Experimental physics

The astronaut and Earth are both in free-fall

Lightning is an electric current

Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future experimental results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they are strongly dependent upon each other. Progress in physics frequently comes about when experimentalists make a discovery that existing theories cannot explain, or when new theories generate experimentally testable predictions, which inspire new experiments.[50]

Physicists who work at the interplay of theory and experiment are called phenomenologists, who study complex phenomena observed in experiment and work to relate them to a fundamental theory.[51]

Theoretical physics has historically taken inspiration from philosophy; electromagnetism was unified this way.[d] Beyond the known universe, the field of theoretical physics also deals with hypothetical issues,[e] such as parallel universes, a multiverse, and higher dimensions. Theorists invoke these ideas in hopes of solving particular problems with existing theories. They then explore the consequences of these ideas and work toward making testable predictions.

Experimental physics expands, and is expanded by, engineering and technology. Experimental physicists involved in basic research design and perform experiments with equipment such as particle accelerators and lasers, whereas those involved in applied research often work in industry developing technologies such as magnetic resonance imaging (MRI) and transistors. Feynman has noted that experimentalists may seek areas which are not well-explored by theorists.[52]

Scope and aims

Physics involves modeling the natural world with theory, usually quantitative. Here, the path of a particle is modeled with the mathematics of calculus to explain its behavior: the purview of the branch of physics known as mechanics.

Physics covers a wide range of phenomena, from elementary particles (such as quarks, neutrinos, and electrons) to the largest superclusters of galaxies. Included in these phenomena are the most basic objects composing all other things. Therefore, physics is sometimes called the "fundamental science".[47] Physics aims to describe the various phenomena that occur in nature in terms of simpler phenomena. Thus, physics aims to both connect the things observable to humans to root causes, and then connect these causes together.

For example, the ancient Chinese observed that certain rocks (lodestone and magnetite) were attracted to one another by an invisible force. This effect was later called magnetism, which was first rigorously studied in the 17th century. But even before the Chinese discovered magnetism, the ancient Greeks knew of other objects such as amber, that when rubbed with fur would cause a similar invisible attraction between the two.[53] This was also first studied rigorously in the 17th century and came to be called electricity. Thus, physics had come to understand two observations of nature in terms of some root cause (electricity and magnetism). However, further work in the 19th century revealed that these two forces were just two different aspects of one force—electromagnetism. This process of "unifying" forces continues today, and electromagnetism and the weak nuclear force are now considered to be two aspects of the electroweak interaction. Physics hopes to find an ultimate reason (Theory of Everything) for why nature is as it is (see section Current research below for more information).[54]

Research fields

Contemporary research in physics can be broadly divided into particle physics; condensed matter physics; atomic, molecular, and optical physics; astrophysics; and applied physics. Some physics departments also support physics education research and physics outreach.[55]

Since the 20th century, the individual fields of physics have become increasingly specialised, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (1879–1955) and Lev Landau (1908–1968), who worked in multiple fields of physics, are now very rare.[f]

The major fields of physics, along with their subfields and the theories and concepts they employ, are shown in the following table.

FieldSubfieldsMajor theoriesConcepts

Particle physicsNuclear physics, Nuclear astrophysics, Particle astrophysics, Particle physics phenomenologyStandard Model, Quantum field theory, Quantum electrodynamics, Quantum chromodynamics, Electroweak theory, Effective field theory, Lattice field theory, Lattice gauge theory, Gauge theory, Supersymmetry, Grand unification theory, Superstring theory, M-theoryFundamental force (gravitational, electromagnetic, weak, strong), Elementary particle, Spin, Antimatter, Spontaneous symmetry breaking, Neutrino oscillation, Seesaw mechanism, Brane, String, Quantum gravity, Theory of everything, Vacuum energy

Atomic, molecular, and optical physicsAtomic physics, Molecular physics, Atomic and Molecular astrophysics, Chemical physics, Optics, PhotonicsQuantum optics, Quantum chemistry, Quantum information sciencePhoton, Atom, Molecule, Diffraction, Electromagnetic radiation, Laser, Polarization (waves), Spectral line, Casimir effect

Condensed matter physicsSolid state physics, High pressure physics, Low-temperature physics, Surface Physics, Nanoscale and Mesoscopic physics, Polymer physicsBCS theory, Bloch wave, Density functional theory, Fermi gas, Fermi liquid, Many-body theory, Statistical MechanicsPhases (gas, liquid, solid), Bose-Einstein condensate, Electrical conduction, Phonon, Magnetism, Self-organization, Semiconductor, superconductor, superfluid, Spin,

AstrophysicsAstronomy, Astrometry, Cosmology, Gravitation physics, High-energy astrophysics, Planetary astrophysics, Plasma physics, Solar physics, Space physics, Stellar astrophysicsBig Bang, Cosmic inflation, General relativity, Newton's law of universal gravitation, Lambda-CDM model, MagnetohydrodynamicsBlack hole, Cosmic background radiation, Cosmic string, Cosmos, Dark energy, Dark matter, Galaxy, Gravity, Gravitational radiation, Gravitational singularity, Planet, Solar System, Star, Supernova, Universe

Applied PhysicsAccelerator physics, Acoustics, Agrophysics, Biophysics, Chemical Physics, Communication Physics, Econophysics, Engineering physics, Fluid dynamics, Geophysics, Laser Physics, Materials physics, Medical physics, Nanotechnology, Optics, Optoelectronics, Photonics, Photovoltaics, Physical chemistry, Physics of computation, Plasma physics, Solid-state devices, Quantum chemistry, Quantum electronics, Quantum information science, Vehicle dynamics

Particle physics

Main articles: Particle physics and Nuclear physics

A simulated event in the CMS detector of the Large Hadron Collider, featuring a possible appearance of the Higgs boson.

Particle physics is the study of the elementary constituents of matter and energy and the interactions between them.[56] In addition, particle physicists design and develop the high energy accelerators,[57] detectors,[58] and computer programs[59]necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally but are created only during high-energy collisions of other particles.[60]

Currently, the interactions of elementary particles and fields are described by the Standard Model.[61] The model accounts for the 12 known particles of matter (quarks and leptons) that interact via the strong, weak, and electromagneticfundamental forces.[61] Dynamics are described in terms of matter particles exchanging gauge bosons (gluons, W and Z bosons, and photons, respectively).[62] The Standard Model also predicts a particle known as the Higgs boson.[61] In July 2012 CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson,[63] an integral part of a Higgs mechanism.

Nuclear physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.

Atomic, molecular, and optical physics

Main article: Atomic, molecular, and optical physics

Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions on the scale of single atoms and molecules. The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of their relevant energy scales. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).

Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions,[64][65][66] low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of high-energy physics.

Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light. Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.

Condensed matter physics

Main article: Condensed matter physics

Velocity-distribution data of a gas of rubidium atoms, confirming the discovery of a new phase of matter, the Bose–Einstein condensate

Condensed matter physics is the field of physics that deals with the macroscopic physical properties of matter.[67] In particular, it is concerned with the "condensed" phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.[68]

The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms.[69] More exotic condensed phases include the superfluid[70] and the Bose–Einstein condensate[71] found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials,[72] and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.[73]

Condensed matter physics is the largest field of contemporary physics. Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields.[74] The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967.[75] In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics.[74] Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.[68]

Astrophysics

Main articles: Astrophysics and Physical cosmology

The deepest visible-light image of the universe, the Hubble Ultra Deep Field

Astrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the Solar System, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.[76]

The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.

Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe is expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.

The Big Bang was confirmed by the success of Big Bang nucleosynthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle. Cosmologists have recently established the ΛCDM model of the evolution of the universe, which includes cosmic inflation, dark energy, and dark matter.

Numerous possibilities and discoveries are anticipated to emerge from new data from the Fermi Gamma-ray Space Telescope over the upcoming decade and vastly revise or clarify existing models of the universe.[77][78] In particular, the potential for a tremendous discovery surrounding dark matter is possible over the next several years.[79] Fermi will search for evidence that dark matter is composed of weakly interacting massive particles, complementing similar experiments with the Large Hadron Collider and other underground detectors.

IBEX is already yielding new astrophysical discoveries: "No one knows what is creating the ENA (energetic neutral atoms) ribbon" along the termination shock of the solar wind, "but everyone agrees that it means the textbook picture of the heliosphere—in which the Solar System's enveloping pocket filled with the solar wind's charged particles is plowing through the onrushing 'galactic wind' of the interstellar medium in the shape of a comet—is wrong."[80]

Current research

Further information: List of unsolved problems in physics

Feynman diagram signed by R. P. Feynman.

A typical event described by physics: a magnet levitating above a superconductor demonstrates the Meissner effect.

Research in physics is continually progressing on a large number of fronts.

In condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity.[81]Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.[68][82]

In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. Large Hadron Collider had already found the Higgs Boson. Future research aims to prove or disprove the supersymmetry, which extends the Standard Model of particle physics. The research on dark matter and dark energy is also on the agenda.[83]

Theoretical attempts to unify quantum mechanics and general relativity into a single theory of quantum gravity, a program ongoing for over half a century, have not yet been decisively resolved. The current leading candidates are M-theory, superstring theory and loop quantum gravity.

Many astronomical and cosmological phenomena have yet to be satisfactorily explained, including the existence of ultra-high energy cosmic rays, the baryon asymmetry, the acceleration of the universe and the anomalous rotation rates of galaxies.

Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity,[84] chaos,[85] or turbulence[86] are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sandpiles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.[87]

These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems. In the 1932 Annual Review of Fluid Mechanics, Horace Lamb said:[88]

I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic.

See also

Physics portal

Cosmology portal

Book: Physics

General

Glossary of classical physics

Glossary of physics

Index of physics articles

List of elementary physics formulae, Elementary physics formulae

List of important publications in physics

List of physicists

List of physics concepts in primary and secondary education curricula

Outline of physics

Physics outreach

Perfection in physics and chemistry

Relationship between mathematics and physics

Timeline of developments in theoretical physics

Timeline of fundamental physics discoveries

Main branches

Classical mechanics

Electromagnetism

Modern physics

Optics

Thermodynamics

Related fields

Astronomy

Chemistry

Engineering

Mathematics

Cosmology

Interdisciplinary fields incorporating physics

Acoustics

Biophysics

Econophysics

Geophysics

Nanotechnology

Neurophysics

Psychophysics

Notes

Jump up^ The term 'universe' is defined as everything that physically exists: the entirety of space and time, all forms of matter, energy and momentum, and the physical laws and constants that govern them. However, the term 'universe' may also be used in slightly different contextual senses, denoting concepts such as the cosmos or the philosophical world.

Jump up^ Francis Bacon's 1620 Novum Organum was critical in the development of scientific method.[10]

Jump up^ Calculus was independently developed at around the same time by Gottfried Wilhelm Leibniz; while Leibniz was the first to publish his work and develop much of the notation used for calculus today, Newton was the first to develop calculus and apply it to physical problems. See also Leibniz–Newton calculus controversy

Jump up^ See, for example, the influence of Kant and Ritter on Ørsted.

Jump up^ Concepts which are denoted hypothetical can change with time. For example, the atom of nineteenth-century physics was denigrated by some, including Ernst Mach's critique of Ludwig Boltzmann's formulation of statistical mechanics. By the end of World War II, the atom was no longer deemed hypothetical.

Jump up^ Yet, universalism is encouraged in the culture of physics. For example, the World Wide Web, which was innovated at CERN by Tim Berners-Lee, was created in service to the computer infrastructure of CERN, and was/is intended for use by physicists worldwide. The same might be said for arXiv.org

References

Jump up^ "physics". Online Etymology Dictionary. Retrieved 2016-11-01.

Jump up^ "physic". Online Etymology Dictionary. Retrieved 2016-11-01.

Jump up^ φύσις, φυσική, ἐπιστήμη. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project

Jump up^ At the start of The Feynman Lectures on Physics, Richard Feynman offers the atomic hypothesis as the single most prolific scientific concept: "If, in some cataclysm, all [] scientific knowledge were to be destroyed [save] one sentence [...] what statement would contain the most information in the fewest words? I believe it is [...] that all things are made up of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another ..." (Feynman, Leighton & Sands 1963, p. I-2)

Jump up^ "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." (Maxwell 1878, p. 9)

^ Jump up to:a b c "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of the human intellect in its quest to understand our world and ourselves.Young & Freedman 2014, p. 1

Jump up^ "Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns that relate these phenomena."Young & Freedman 2014, p. 2

Jump up^ "Physics is the study of your world and the world and universe around you." (Holzner 2006, p. 7)

^ Jump up to:a b Krupp 2003

Jump up^ Cajori 1917, pp. 48–49

Jump up^ Aaboe 1991

Jump up^ Clagett 1995

Jump up^ Thurston 1994

Jump up^ Singer 2008, p. 35

Jump up^ Lloyd 1970, pp. 108–109

Jump up^ Gill, N.S. "Atomism - Pre-Socratic Philosophy of Atomism". About Education. Retrieved 2014-04-01.

Jump up^ Howard & Rogers 1995, pp. 6–7

Jump up^ Ben-Chaim 2004

Jump up^ Guicciardini 1999

Jump up^ Allen 1997

Jump up^ "The Industrial Revolution". Schoolscience.org, Institute of Physics. Retrieved 2014-04-01.

Jump up^ O'Connor & Robertson 1996a

^ Jump up to:a b O'Connor & Robertson 1996b

Jump up^ DONUT 2001

Jump up^ Cho 2012

Jump up^ Womersley, J. (2005). "Beyond the Standard Model" (PDF). Symmetry. 2 (1): 22–25.

Jump up^ Noll notes that some universities still use this title —Noll, Walter (23 June 2006). "On the Past and Future of Natural Philosophy" (PDF). Journal of Elasticity. 84 (1): 1–11. doi:10.1007/s10659-006-9068-y.

Jump up^ Rosenberg 2006, Chapter 1

Jump up^ Godfrey-Smith 2003, Chapter 14: "Bayesianism and Modern Theories of Evidence"

Jump up^ Godfrey-Smith 2003, Chapter 15: "Empiricism, Naturalism, and Scientific Realism?"

Jump up^ Laplace 1951

Jump up^ Schrödinger 1983

Jump up^ Schrödinger 1995

Jump up^ "I think that Roger is a Platonist at heart but he must answer for himself." (Hawking & Penrose 1996, p. 4)

Jump up^ Penrose 2004

Jump up^ Penrose et al. 1997

Jump up^ "acoustics". Encyclopædia Britannica. Retrieved 14 June 2013.

Jump up^ "Bioacoustics – the International Journal of Animal Sound and its Recording". Taylor & Francis. Retrieved 31 July 2012.

Jump up^ "Acoustics and You (A Career in Acoustics?)". Acoustical Society of America. Retrieved 21 May 2013.

Jump up^ Tipler & Llewellyn 2003, pp. 269, 477, 561

Jump up^ Tipler & Llewellyn 2003, pp. 1–4, 115, 185–187

Jump up^ Dijksterhuis 1986

Jump up^ "Although usually remembered today as a philosopher, Plato was also one of ancient Greece's most important patrons of mathematics. Inspired by Pythagoras, he founded his Academy in Athens in 387 BC, where he stressed mathematics as a way of understanding more about reality. In particular, he was convinced that geometry was the key to unlocking the secrets of the universe. The sign above the Academy entrance read: 'Let no-one ignorant of geometry enter here.'" (Mastin 2010)

Jump up^ "Philosophy is written in that great book which ever lies before our eyes. I mean the universe, but we cannot understand it if we do not first learn the language and grasp the symbols in which it is written. This book is written in the mathematical language, and the symbols are triangles, circles, and other geometrical figures, without whose help it is humanly impossible to comprehend a single word of it, and without which one wanders in vain through a dark labyrinth." – Galileo (1623), The Assayer, as quoted in Toraldo Di Francia 1976, p. 10

Jump up^ "Applications of Mathematics to the Sciences". 25 January 2000. Archived from the original on 2015-05-10. Retrieved 30 January 2012.

Jump up^ "Journal of Mathematical Physics". ResearchGate. Retrieved 31 March 2014. mathematical physics — that is, the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories.

^ Jump up to:a b Feynman, Leighton & Sands 1963, Chapter 3: "The Relation of Physics to Other Sciences"; see also reductionism and special sciences

Jump up^ Ellis, G.; Silk, J. (16 December 2014). "Scientific method: Defend the integrity of physics". Nature. 516 (7531): 321–323. Bibcode:2014Natur.516..321E. doi:10.1038/516321a.

Jump up^ Honderich 1995, pp. 474–476

Jump up^ "Has theoretical physics moved too far away from experiments? Is the field entering a crisis and, if so, what should we do about it?". Perimeter Institute for Theoretical Physics. June 2015. Archived from the original on 21 Apr 2016.

Jump up^ "Phenomenology". Max Planck Institute for Physics. Archived from the original on 7 March 2016. Retrieved 22 October 2016.

Jump up^ "In fact experimenters have a certain individual character. They ... very often do their experiments in a region in which people know the theorist has not made any guesses." (Feynman 1965, p. 157)

Jump up^ Stewart, J. (2001). Intermediate Electromagnetic Theory. World Scientific. p. 50. ISBN 981-02-4471-1.

Jump up^ Weinberg, S. (1993). Dreams of a Final Theory: The Search for the Fundamental Laws of Nature. Hutchinson Radius. ISBN 0-09-177395-4.

Jump up^ Redish, E. "Science and Physics Education Homepages". University of Maryland Physics Education Research Group.

Jump up^ "Division of Particles & Fields". American Physical Society. Retrieved 18 October 2012.

Jump up^ Halpern 2010

Jump up^ Grupen 1999

Jump up^ Walsh 2012

Jump up^ "High Energy Particle Physics Group". Institute of Physics. Retrieved 18 October 2012.

^ Jump up to:a b c Oerter 2006

Jump up^ Gribbin, Gribbin & Gribbin 1998

Jump up^ "CERN experiments observe particle consistent with long-sought Higgs boson". CERN. 4 July 2012. Retrieved 18 October 2012.

Jump up^ For example, AMO research groups at "MIT AMO Group". Retrieved 21 February 2014.

Jump up^ "Korea University, Physics AMO Group". Retrieved 21 February 2014.

Jump up^ "Aarhus Universitet, AMO Group". Retrieved 21 February 2014.

Jump up^ Taylor & Heinonen 2002

^ Jump up to:a b c Cohen 2008

Jump up^ Moore 2011, pp. 255–258

Jump up^ Leggett 1999

Jump up^ Levy 2001

Jump up^ Stajic, Coontz & Osborne 2011

Jump up^ Mattis 2006

^ Jump up to:a b "History of Condensed Matter Physics". American Physical Society. Retrieved 31 March 2014.

Jump up^ "Philip Anderson". Princeton University, Department of Physics. Retrieved 15 October 2012.

Jump up^ "BS in Astrophysics". University of Hawaii at Manoa. Archived from the original on 4 Apr 2016. Retrieved 14 Oct 2016.

Jump up^ "NASA – Q&A on the GLAST Mission". Nasa: Fermi Gamma-ray Space Telescope. NASA. 28 August 2008. Retrieved 29 April 2009.

Jump up^ See also Nasa – Fermi Science and NASA – Scientists Predict Major Discoveries for GLAST.

Jump up^ "Dark Matter". NASA. 28 August 2008. Retrieved 30 January 2012.

Jump up^ Kerr 2009

Jump up^ Leggett, A. J. (2006). "What DO we know about high Tc?" (PDF). Nature Physics. 2 (3): 134–136. Bibcode:2006NatPh...2..134L. doi:10.1038/nphys254.

Jump up^ Wolf, S. A.; Chtchelkanova, A. Y.; Treger, D. M. (2006). "Spintronics—A retrospective and perspective". IBM Journal of Research and Development. 50: 101. doi:10.1147/rd.501.0101.

Jump up^ Gibney, E. (2015). "LHC 2.0: A new view of the Universe". Nature. 519 (7542): 142–143. Bibcode:2015Natur.519..142G. doi:10.1038/519142a.

Jump up^ National Research Council & Committee on Technology for Future Naval Forces 1997, p. 161

Jump up^ Kellert 1993, p. 32

Jump up^ Eames, I.; Flor, J. B. (2011). "New developments in understanding interfacial processes in turbulent flows". Philosophical Transactions of the Royal Society A. 369 (1937): 702–705. Bibcode:2011RSPTA.369..702E. doi:10.1098/rsta.2010.0332. Richard Feynman said that 'Turbulence is the most important unsolved problem of classical physics'

Jump up^ See the work of Ilya Prigogine, on 'systems far from equilibrium', and others, e.g., National Research Council; Board on Physics and Astronomy; Committee on CMMP 2010 (2010). "What happens far from equilibrium and why". Condensed-Matter and Materials Physics: the science of the world around us. 2007. National Academies Press. pp. 91–110. arXiv:1009.4874. doi:10.17226/11967. ISBN 978-0-309-10969-7.

Jump up^ Goldstein 1969

Sources

Aaboe, A. (1991). "Mesopotamian Mathematics, Astronomy, and Astrology". The Cambridge Ancient History. Volume III (2nd ed.). Cambridge University Press. ISBN 978-0-521-22717-9.

Allen, D. (10 April 1997). "Calculus". Texas A&M University. Retrieved 1 April 2014.

Ben-Chaim, M. (2004). Experimental Philosophy and the Birth of Empirical Science: Boyle, Locke and Newton. Aldershot: Ashgate. ISBN 0-7546-4091-4. OCLC 53887772.

Cajori, Florian (1917). A History of Physics in Its Elementary Branches: Including the Evolution of Physical Laboratories. Macmillan.

Cho, A. (13 July 2012). "Higgs Boson Makes Its Debut After Decades-Long Search". Science. 337 (6091): 141–143. doi:10.1126/science.337.6091.141. PMID 22798574.

Clagett, M. (1995). Ancient Egyptian Science. Volume 2. Philadelphia: American Philosophical Society.

Cohen, M.L. (2008). "Fifty Years of Condensed Matter Physics". Physical Review Letters. 101 (5): 25001–25006. Bibcode:2008PhRvL.101y0001C. doi:10.1103/PhysRevLett.101.250001. PMID 19113681.

DØ Collaboration, 584 co-authors (12 June 2007). "Direct observation of the strange 'b' baryon {\displaystyle \Xi _{b}^{-}}". arXiv:0706.1690v2 [hep-ex].

Dijksterhuis, E.J. (1986). The mechanization of the world picture: Pythagoras to Newton. Princeton, New Jersey: Princeton University Press. ISBN 978-0-691-08403-9.

DONUT (29 June 2001). "The Standard Model". Fermilab. Retrieved 1 April 2014.

Feynman, R.P.; Leighton, R.B.; Sands, M. (1963). The Feynman Lectures on Physics. 1. ISBN 0-201-02116-1.

Feynman, R.P. (1965). The Character of Physical Law. ISBN 0-262-56003-8.

Godfrey-Smith, P. (2003). Theory and Reality: An Introduction to the Philosophy of Science. ISBN 0-226-30063-3.

Goldstein, S. (1969). "Fluid Mechanics in the First Half of this Century". Annual Review of Fluid Mechanics. 1: 1–28. Bibcode:1969AnRFM...1....1G. doi:10.1146/annurev.fl.01.010169.000245.

Gribbin, J.R.; Gribbin, M.; Gribbin, J. (1998). Q is for Quantum: An Encyclopedia of Particle Physics. Free Press. ISBN 978-0-684-85578-3.

Grupen, Klaus (10 Jul 1999). "Instrumentation in Elementary Particle Physics: VIII ICFA School". AIP Conference Proceedings. 536: 3–34. arXiv:physics/9906063. Bibcode:2000AIPC..536....3G. doi:10.1063/1.1361756.

Guicciardini, N. (1999). Reading the Principia: The Debate on Newton's Methods for Natural Philosophy from 1687 to 1736. New York: Cambridge University Press.

Halpern, P. (2010). Collider: The Search for the World's Smallest Particles. John Wiley & Sons. ISBN 978-0-470-64391-4.

Hawking, S.; Penrose, R. (1996). The Nature of Space and Time. ISBN 0-691-05084-8.

Holzner, S. (2006). Physics for Dummies. John Wiley & Sons. ISBN 0-470-61841-8. Physics is the study of your world and the world and universe around you.

Honderich, T. (editor) (1995). The Oxford Companion to Philosophy (1 ed.). Oxford: Oxford University Press. pp. 474–476. ISBN 0-19-866132-0.

Howard, Ian; Rogers, Brian (1995). Binocular Vision and Stereopsis. Oxford University Press. ISBN 978-0-19-508476-4.

Kellert, S.H. (1993). In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press. ISBN 0-226-42976-8.

Kerr, R.A. (16 October 2009). "Tying Up the Solar System With a Ribbon of Charged Particles". Science. 326 (5951). pp. 350–351. Retrieved 27 November 2009.

Krupp, E.C. (2003). Echoes of the Ancient Skies: The Astronomy of Lost Civilizations. Dover Publications. ISBN 0-486-42882-6. Retrieved 31 March 2014.

Laplace, P.S. (1951). A Philosophical Essay on Probabilities. Translated from the 6th French edition by Truscott, F.W. and Emory, F.L. New York: Dover Publications.

Leggett, A.J. (1999). "Superfluidity". Reviews of Modern Physics. 71 (2): S318–S323. Bibcode:1999RvMPS..71..318L. doi:10.1103/RevModPhys.71.S318.

Levy, B.G. (December 2001). "Cornell, Ketterle, and Wieman Share Nobel Prize for Bose-Einstein Condensates". Physics Today. 54 (12): 14. Bibcode:2001PhT....54l..14L. doi:10.1063/1.1445529.

Lloyd, G.E.R. (1970). Early Greek Science: Thales to Aristotle. London; New York: Chatto and Windus; W. W. Norton & Company. ISBN 0-393-00583-6.

Mattis, D.C. (2006). The Theory of Magnetism Made Simple. World Scientific. ISBN 978-981-238-579-6.

Maxwell, J.C. (1878). Matter and Motion. D. Van Nostrand. ISBN 0-486-66895-9.

Moore, J.T. (2011). Chemistry For Dummies (2 ed.). John Wiley & Sons. ISBN 978-1-118-00730-3.

National Research Council; Committee on Technology for Future Naval Forces (1997). Technology for the United States Navy and Marine Corps, 2000–2035 Becoming a 21st-Century Force: Volume 9: Modeling and Simulation. Washington, DC: The National Academies Press. ISBN 978-0-309-05928-2.

O'Connor, J.J.; Robertson, E.F. (February 1996a). "Special Relativity". MacTutor History of Mathematics archive. University of St Andrews. Retrieved 1 April 2014.

O'Connor, J.J.; Robertson, E.F. (May 1996b). "A History of Quantum Mechanics". MacTutor History of Mathematics archive. University of St Andrews. Retrieved 1 April 2014.

Oerter, R. (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics. Pi Press. ISBN 978-0-13-236678-6.

Penrose, R.; Shimony, A.; Cartwright, N.; Hawking, S. (1997). The Large, the Small and the Human Mind. Cambridge University Press. ISBN 0-521-78572-3.

Penrose, R. (2004). The Road to Reality. ISBN 0-679-45443-8.

Rosenberg, Alex (2006). Philosophy of Science. Routledge. ISBN 0-415-34317-8.

Schrödinger, E. (1983). My View of the World. Ox Bow Press. ISBN 0-918024-30-7.

Schrödinger, E. (1995). The Interpretation of Quantum Mechanics. Ox Bow Press. ISBN 1-881987-09-4.

Singer, C. (2008). A Short History of Science to the 19th Century. Streeter Press.

Stajic, Jelena; Coontz, R.; Osborne, I. (8 April 2011). "Happy 100th, Superconductivity!". Science. 332 (6026): 189. Bibcode:2011Sci...332..189S. doi:10.1126/science.332.6026.189.

Taylor, P.L.; Heinonen, O. (2002). A Quantum Approach to Condensed Matter Physics. Cambridge University Press. ISBN 978-0-521-77827-5.

Thurston, H. (1994). Early Astronomy. Springer.

Tipler, Paul; Llewellyn, Ralph (2003). Modern Physics. W. H. Freeman. ISBN 978-0-7167-4345-3.

Toraldo Di Francia, G. (1976). The Investigation of the Physical World. ISBN 0-521-29925-X.

Walsh, K.M. (1 June 2012). "Plotting the Future for Computing in High-Energy and Nuclear Physics". Brookhaven National Laboratory. Retrieved 18 October 2012.

Young, H.D.; Freedman, R.A. (2014). Sears and Zemansky's University Physics with Modern Physics Technology Update (13th ed.). Pearson Education. ISBN 978-1-292-02063-1.

Further reading

Peter Woit (January 2017). Fake Physics,

External links

This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. (July 2015) (Learn how and when to remove this template message)

Look up physics in Wiktionary, the free dictionary.

Wikibooks has a book on the topic of: Physics

Wikibooks has a book on the topic of: Physics Study Guide

Wikibooks has a book on the topic of: FHSST Physics

Wikisource has original works on the topic: Physics

Wikiversity has learning materials about Category:Physics

General

Encyclopedia of Physics at Scholarpedia

de Haas, Paul, Historic Papers in Physics (20th Century) at the Wayback Machine (archived 26 August 2009)

PhysicsCentral – Web portal run by the American Physical Society

Physics.org – Web portal run by the Institute of Physics

The Skeptic's Guide to Physics

Usenet Physics FAQ – A FAQ compiled by sci.physics and other physics newsgroups

Website of the Nobel Prize in physics

World of Physics An online encyclopedic dictionary of physics

Nature: Physics

Physics announced 17 July 2008 by the American Physical Society

Physics/Publications at DMOZ

Physicsworld.com – News website from Institute of Physics Publishing

Physics Central – includes articles on astronomy, particle physics, and mathematics.

The Vega Science Trust – science videos, including physics

Video: Physics "Lightning" Tour with Justin Morgan

52-part video course: The Mechanical Universe...and Beyond Note: also available at 01 – Introduction at Google Videos

HyperPhysics website – HyperPhysics, a physics and astronomy mind-map from Georgia State University

Organizations

AIP.org – Website of the American Institute of Physics

APS.org – Website of the American Physical Society

IOP.org – Website of the Institute of Physics

PlanetPhysics.org

Royal Society – Although not exclusively a physics institution, it has a strong history of physics

SPS National – Website of the Society of Physics Students

[show]

v

t

e

The fundamental interactions of physics

[show]

v

t

e

Branches of physics

[show]

v

t

e

Natural science

Authority control

LCCN: sh85101653

GND: 4045956-1

BNF: cb11933127h (data)

NDL: 00561121

Categories: 

Physics

Navigation menu

Not logged in

Talk

Contributions

Create account

Log in

Article

Talk

Read

View source

View history

Search

Main page

Contents

Featured content

Current events

Random article

Donate to Wikipedia

Wikipedia store

Interaction

Help

About Wikipedia

Community portal

Recent changes

Contact page

Tools

What links here

Related changes

Upload file

Special pages

Permanent link

Page information

Wikidata item

Cite this page

Print/export

Create a book

Download as PDF

Printable version

In other projects

Wikimedia Commons

Wikibooks

Wikiquote

Wikisource

Wikiversity

Languages

Acèh

Afrikaans

Alemannisch

አማርኛ

العربية

Aragonés

ܐܪܡܝܐ

Armãneashti

অসমীয়া

Asturianu

Avañe'ẽ

Azərbaycanca

تۆرکجه

বাংলা

Bân-lâm-gú

Basa Banyumasan

Башҡортса

Беларуская

Беларуская (тарашкевіца)‎

भोजपुरी

Български

Boarisch

བོད་ཡིག

Bosanski

Brezhoneg

Буряад

Català

Чӑвашла

Cebuano

Čeština

ChiShona

Corsu

Cymraeg

Dansk

Deutsch

ދިވެހިބަސް

Dolnoserbski

ཇོང་ཁ

Eesti

Ελληνικά

Español

Esperanto

Estremeñu

Euskara

فارسی

Fiji Hindi

Føroyskt

Français

Frysk

Furlan

Gaeilge

Gaelg

Gàidhlig

Galego

贛語

Gĩkũyũ

ગુજરાતી

客家語/Hak-kâ-ngî

Хальмг

한국어

Hawaiʻi

Հայերեն

हिन्दी

Hornjoserbsce

Hrvatski

Ido

Igbo

Ilokano

বিষ্ণুপ্রিয়া মণিপুরী

Bahasa Indonesia

Interlingua

Interlingue

ᐃᓄᒃᑎᑐᑦ/inuktitut

Ирон

IsiXhosa

Íslenska

Italiano

עברית

Basa Jawa

Kalaallisut

ಕನ್ನಡ

Kapampangan

ქართული

कॉशुर / کٲشُر

Kaszëbsczi

Қазақша

Kiswahili

Kongo

Kreyòl ayisyen

Kurdî

Кыргызча

Ladino

Лезги

ລາວ

لۊری شومالی

Latina

Latviešu

Lëtzebuergesch

Lietuvių

Ligure

Limburgs

Lingála

La .lojban.

Luganda

Lumbaart

Magyar

मैथिली

Македонски

Malagasy

മലയാളം

मराठी

მარგალური

مصرى

مازِرونی

Bahasa Melayu

Baso Minangkabau

Mìng-dĕ̤ng-ngṳ̄

Mirandés

Монгол

မြန်မာဘာသာ

Nāhuatl

Nederlands

Nedersaksies

नेपाली

नेपाल भाषा

日本語

Napulitano

Nordfriisk

Norfuk / Pitkern

Norsk bokmål

Norsk nynorsk

Nouormand

Novial

Occitan

Олык марий

ଓଡ଼ିଆ

Oromoo

Oʻzbekcha/ўзбекча

ਪੰਜਾਬੀ

پنجابی

پښتو

Patois

ភាសាខ្មែរ

Picard

Piemontèis

Plattdüütsch

Polski

Português

Română

Runa Simi

Русиньскый

Русский

Саха тыла

Gagana Samoa

संस्कृतम्

Sardu

Scots

Seeltersk

Sesotho

Sesotho sa Leboa

Shqip

Sicilianu

සිංහල

Simple English

سنڌي

Slovenčina

Slovenščina

Ślůnski

Soomaaliga

کوردیی ناوەندی

Sranantongo

Српски / srpski

Srpskohrvatski / српскохрватски

Basa Sunda

Suomi

Svenska

Tagalog

தமிழ்

Татарча/tatarça

తెలుగు

ไทย

Тоҷикӣ

ತುಳು

Türkçe

Türkmençe

ᨅᨔ ᨕᨘᨁᨗ

Українська

اردو

ئۇيغۇرچە / Uyghurche

Vèneto

Tiếng Việt

Volapük

Võro

Walon

文言

Winaray

Wolof

吴语

ייִדיש

Yorùbá

粵語

Zazaki

Zeêuws

Žemaitėška

中文

Edit links

This page was last modified on 28 January 2017, at 17:58.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Jan 31, 2017
 #1
avatar
0

Nuclear chemistry is the subfield of chemistry dealing with radioactivity, nuclear processes, such as nuclear transmutation, and nuclear properties.

It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear waste storage or disposal site.

It includes the study of the chemical effects resulting from the absorption of radiation within living animals, plants, and other materials. The radiation chemistry controls much of radiation biology as radiation has an effect on living things at the molecular scale, to explain it another way the radiation alters the biochemicals within an organism, the alteration of the biomolecules then changes the chemistry which occurs within the organism, this change in chemistry then can lead to a biological outcome. As a result, nuclear chemistry greatly assists the understanding of medical treatments (such as cancer radiotherapy) and has enabled these treatments to improve.

It includes the study of the production and use of radioactive sources for a range of processes. These include radiotherapy in medical applications; the use of radioactive tracers within industry, science and the environment; and the use of radiation to modify materials such as polymers.[1]

It also includes the study and use of nuclear processes in non-radioactive areas of human activity. For instance, nuclear magnetic resonance (NMR) spectroscopy is commonly used in synthetic organic chemistry and physical chemistry and for structural analysis in macromolecular chemistry.

Contents

  [hide] 

1History

2Main areas

2.1Radiation chemistry

2.2Chemistry for nuclear power

2.3Study of nuclear reactions

2.4The nuclear fuel cycle

2.4.1Normal and abnormal conditions

2.4.2Reprocessing

2.4.2.1Law

2.4.2.2PUREX chemistry

2.4.2.3New methods being considered for future use

2.4.3Absorption of fission products on surfaces

3Education

4Spinout areas

4.1Kinetics (use within mechanistic chemistry)

4.2Uses within geology, biology and forensic science

4.2.1Biology

4.3Nuclear magnetic resonance (NMR)

5References

6Text books

7See also

History[edit]

After Wilhelm Röntgen discovered X-rays by working on tesla's pictures, many scientists began to work on ionizing radiation. One of these was Henri Becquerel, who investigated the relationship between phosphorescence and the blackening of photographic plates. When Becquerel (working in France) discovered that, with no external source of energy, the uranium generated rays which could blacken (or fog) the photographic plate, radioactivity was discovered. Marie Curie (working in Paris) and her husband Pierre Curie isolated two new radioactive elements from uranium ore. They used radiometric methods to identify which stream the radioactivity was in after each chemical separation; they separated the uranium ore into each of the different chemical elements that were known at the time, and measured the radioactivity of each fraction. They then attempted to separate these radioactive fractions further, to isolate a smaller fraction with a higher specific activity (radioactivity divided by mass). In this way, they isolated polonium and radium. It was noticed in about 1901 that high doses of radiation could cause an injury in humans. Henri Becquerel had carried a sample of radium in his pocket and as a result he suffered a high localised dose which resulted in a radiation burn[6]. This injury resulted in the biological properties of radiation being investigated, which in time resulted in the development of medical treatments.

Ernest Rutherford, working in Canada and England, showed that radioactive decay can be described by a simple equation (a linear first degree derivative equation, now called first order kinetics), implying that a given radioactive substance has a characteristic "half-life" (the time taken for the amount of radioactivity present in a source to diminish by half). He also coined the terms alpha, beta and gamma rays, he converted nitrogen into oxygen, and most importantly he supervised the students who did the Geiger–Marsden experiment (gold leaf experiment) which showed that the 'plum pudding model' of the atom was wrong. In the plum pudding model, proposed by J. J. Thomson in 1904, the atom is composed of electrons surrounded by a 'cloud' of positive charge to balance the electrons' negative charge. To Rutherford, the gold foil experiment implied that the positive charge was confined to a very small nucleus leading first to the Rutherford model, and eventually to the Bohr model of the atom, where the positive nucleus is surrounded by the negative electrons.

In 1934 Marie Curie's daughter (Irène Joliot-Curie) and son-in-law (Frédéric Joliot-Curie) were the first to create artificial radioactivity: they bombarded boron with alpha particles to make the neutron-poor isotope nitrogen-13; this isotope emitted positrons.[2] In addition, they bombarded aluminium and magnesium with neutrons to make new radioisotopes.

Main areas[edit]

Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).

For further details please see the page on radiochemistry.

Radiation chemistry[edit]

Radiation chemistry is the study of the chemical effects of radiation on matter; this is very different from radiochemistry as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and hydrogen peroxide.

Chemistry for nuclear power[edit]

Radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role for uranium and thorium fuel precursors synthesis, starting from ores of these elements, fuel fabrication, coolant chemistry, fuel reprocessing, radioactive waste treatment and storage, monitoring of radioactive elements release during reactor operation and radioactive geological storage, etc. [3]

Study of nuclear reactions[edit]

See also: nuclear physics and nuclear reactions

A combination of radiochemistry and radiation chemistry is used to study nuclear reactions such as fission and fusion. Some early evidence for nuclear fission was the formation of a short-lived radioisotope of barium which was isolated from neutron irradiated uranium (139Ba, with a half-life of 83 minutes and 140Ba, with a half-life of 12.8 days, are major fission products of uranium). At the time, it was thought that this was a new radium isotope, as it was then standard radiochemical practice to use a barium sulfate carrier precipitate to assist in the isolation of radium.[7]. More recently, a combination of radiochemical methods and nuclear physics has been used to try to make new 'superheavy' elements; it is thought that islands of relative stability exist where the nuclides have half-lives of years, thus enabling weighable amounts of the new elements to be isolated. For more details of the original discovery of nuclear fission see the work of Otto Hahn.[4]

The nuclear fuel cycle[edit]

This is the chemistry associated with any part of the nuclear fuel cycle, including nuclear reprocessing. The fuel cycle includes all the operations involved in producing fuel, from mining, ore processing and enrichment to fuel production (Front end of the cycle). It also includes the 'in-pile' behaviour (use of the fuel in a reactor) before the back end of the cycle. The back end includes the management of the used nuclear fuel in either a spent fuel pool or dry storage, before it is disposed of into an underground waste store or reprocessed.

Normal and abnormal conditions[edit]

The nuclear chemistry associated with the nuclear fuel cycle can be divided into two main areas, one area is concerned with operation under the intended conditions while the other area is concerned with maloperation conditions where some alteration from the normal operating conditions has occurred or (more rarely) an accident is occurring.

Reprocessing[edit]

Law[edit]

In the United States it is normal to use fuel once in a power reactor before placing it in a waste store. The long term plan is currently to place the used civilian reactor fuel in a deep store. This non-reprocessing policy was started in March 1977 because of concerns about nuclear weapons proliferation. President Jimmy Carter issued a Presidential directive which indefinitely suspended the commercial reprocessing and recycling of plutonium in the United States. This directive was likely an attempt by the United States to lead other countries by example, but many other nations continue to reprocess spent nuclear fuels. The Russian government under President Vladimir Putin repealed a law which had banned the import of used nuclear fuel, which makes it possible for Russians to offer a reprocessing service for clients outside Russia (similar to that offered by BNFL).

PUREX chemistry[edit]

The current method of choice is to use the PUREX liquid-liquid extraction process which uses a tributyl phosphate/hydrocarbon mixture to extract both uranium and plutonium from nitric acid. This extraction is of the nitrate salts and is classed as being of a solvation mechanism. For example, the extraction of plutonium by an extraction agent (S) in a nitrate medium occurs by the following reaction.

Pu4+aq + 4NO3−aq + 2Sorganic → [Pu(NO3)4S2]organic

A complex bond is formed between the metal cation, the nitrates and the tributyl phosphate, and a model compound of a dioxouranium(VI) complex with two nitrates and two triethyl phosphates has been characterised by X-ray crystallography.[5]

When the nitric acid concentration is high the extraction into the organic phase is favoured, and when the nitric acid concentration is low the extraction is reversed (the organic phase is stripped of the metal). It is normal to dissolve the used fuel in nitric acid, after the removal of the insoluble matter the uranium and plutonium are extracted from the highly active liquor. It is normal to then back extract the loaded organic phase to create a medium active liquor which contains mostly uranium and plutonium with only small traces of fission products. This medium active aqueous mixture is then extracted again by tributyl phosphate/hydrocarbon to form a new organic phase, the metal bearing organic phase is then stripped of the metals to form an aqueous mixture of only uranium and plutonium. The two stages of extraction are used to improve the purity of the actinide product, the organic phase used for the first extraction will suffer a far greater dose of radiation. The radiation can degrade the tributyl phosphate into dibutyl hydrogen phosphate. The dibutyl hydrogen phosphate can act as an extraction agent for both the actinides and other metals such as ruthenium. The dibutyl hydrogen phosphate can make the system behave in a more complex manner as it tends to extract metals by an ion exchange mechanism (extraction favoured by low acid concentration), to reduce the effect of the dibutyl hydrogen phosphate it is common for the used organic phase to be washed with sodium carbonate solution to remove the acidic degradation products of the tributyl phosphate.

New methods being considered for future use[edit]

The PUREX process can be modified to make a UREX (URanium EXtraction) process which could be used to save space inside high level nuclear waste disposal sites, such as Yucca Mountain nuclear waste repository, by removing the uranium which makes up the vast majority of the mass and volume of used fuel and recycling it as reprocessed uranium.

The UREX process is a PUREX process which has been modified to prevent the plutonium being extracted. This can be done by adding a plutonium reductant before the first metal extraction step. In the UREX process, ~99.9% of the Uranium and >95% of Technetium are separated from each other and the other fission products and actinides. The key is the addition of acetohydroxamic acid (AHA) to the extraction and scrub sections of the process. The addition of AHA greatly diminishes the extractability of Plutonium and Neptunium, providing greater proliferation resistance than with the plutonium extraction stage of the PUREX process.

Adding a second extraction agent, octyl(phenyl)-N, N-dibutyl carbamoylmethyl phosphine oxide(CMPO) in combination with tributylphosphate, (TBP), the PUREX process can be turned into the TRUEX (TRansUranic EXtraction) process this is a process which was invented in the USA by Argonne National Laboratory, and is designed to remove the transuranic metals (Am/Cm) from waste. The idea is that by lowering the alpha activity of the waste, the majority of the waste can then be disposed of with greater ease. In common with PUREX this process operates by a solvation mechanism.

As an alternative to TRUEX, an extraction process using a malondiamide has been devised. The DIAMEX (DIAMideEXtraction) process has the advantage of avoiding the formation of organic waste which contains elements other than Carbon, Hydrogen, Nitrogen, and Oxygen. Such an organic waste can be burned without the formation of acidic gases which could contribute to acid rain. The DIAMEX process is being worked on in Europe by the French CEA. The process is sufficiently mature that an industrial plant could be constructed with the existing knowledge of the process. In common with PUREX this process operates by a solvation mechanism.[8][9]

Selective Actinide Extraction (SANEX). As part of the management of minor actinides it has been proposed that the lanthanides and trivalent minor actinides should be removed from the PUREX raffinate by a process such as DIAMEX or TRUEX. In order to allow the actinides such as americium to be either reused in industrial sources or used as fuel the lanthanides must be removed. The lanthanides have large neutron cross sections and hence they would poison a neutron driven nuclear reaction. To date the extraction system for the SANEX process has not been defined, but currently several different research groups are working towards a process. For instance the French CEA is working on a bis-triaiznyl pyridine (BTP) based process.

Other systems such as the dithiophosphinic acids are being worked on by some other workers.

This is the UNiversal EXtraction process which was developed in Russia and the Czech Republic, it is a process designed to remove all of the most troublesome (Sr, Cs and minor actinides) radioisotopes from the raffinates left after the extraction of uranium and plutonium from used nuclear fuel. [10][11] The chemistry is based upon the interaction of caesium and strontium with poly ethylene oxide (poly ethylene glycol) [12] and a cobalt carborane anion (known as chlorinated cobalt dicarbollide) . The actinides are extracted by CMPO, and the diluent is a polar aromatic such as nitrobenzene. Other dilents such as meta-nitrobenzotrifluoride and phenyl trifluoromethyl sulfone [13] have been suggested as well.

Absorption of fission products on surfaces[edit]

Another important area of nuclear chemistry is the study of how fission products interact with surfaces; this is thought to control the rate of release and migration of fission products both from waste containers under normal conditions and from power reactors under accident conditions. It is interesting to note that, like chromate and molybdate, the 99TcO4 anion can react with steel surfaces to form a corrosion resistant layer. In this way, these metaloxo anions act as anodic corrosion inhibitors. The formation of 99TcO2 on steel surfaces is one effect which will retard the release of 99Tc from nuclear waste drums and nuclear equipment which has been lost before decontamination (e.g. submarine reactors lost at sea). This 99TcO2 layer renders the steel surface passive, inhibiting the anodic corrosion reaction. The radioactive nature of technetium makes this corrosion protection impractical in almost all situations. It has also been shown that 99TcO4 anions react to form a layer on the surface of activated carbon (charcoal) or aluminium.[6][14]. A short review of the biochemical properties of a series of key long lived radioisotopes can be read on line.[15]

99Tc in nuclear waste may exist in chemical forms other than the 99TcO4 anion, these other forms have different chemical properties.[16]

Similarly, the release of iodine-131 in a serious power reactor accident could be retarded by absorption on metal surfaces within the nuclear plant.[7]

Education[edit]

Despite the growing use of nuclear medicine, the potential expansion of nuclear power plants, and worries about protection against nuclear threats and the management of the nuclear waste generated in past decades, the number of students opting to specialize in nuclear and radiochemistry has decreased significantly over the past few decades. Now, with many experts in these fields approaching retirement age, action is needed to avoid a workforce gap in these critical fields, for example by building student interest in these careers, expanding the educational capacity of universities and colleges, and providing more specific on-the-job training.[8]

Nuclear and Radiochemistry (NRC) is mostly being taught at university level, usually first at the Master- and PhD-degree level. In Europe, as substantial effort is being done to harmonize and prepare the NRC education for the industry's and society's future needs. This effort is being coordinated in a project funded by the Coordinated Action supported by the European Atomic Energy Community's 7th Framework Program: The CINCH-II project - Cooperation in education and training In Nuclear Chemistry. This project has set up a wiki dedicated to NRC teaching: NucWik. Although NucWik is primarily aimed at teachers, anyone interested in Nuclear and Radiochemistry is welcome and can find a lot of information and material explaining topics related to NRC.

Spinout areas[edit]

Some methods first developed within nuclear chemistry and physics have become so widely used within chemistry and other physical sciences that they may be best thought of as separate from normal nuclear chemistry. For example, the isotope effect is used so extensively to investigate chemical mechanisms and the use of cosmogenic isotopes and long-lived unstable isotopes in geology that it is best to consider much of isotopic chemistry as separate from nuclear chemistry.

Kinetics (use within mechanistic chemistry)[edit]

The mechanisms of chemical reactions can be investigated by observing how the kinetics of a reaction is changed by making an isotopic modification of a substrate, known as the kinetic isotope effect. This is now a standard method in organic chemistry. Briefly, replacing normal hydrogen (protons) by deuterium within a molecule causes the molecular vibrational frequency of X-H (for example C-H, N-H and O-H) bonds to decrease, which leads to a decrease in vibrational zero-point energy. This can lead to a decrease in the reaction rate if the rate-determining step involves breaking a bond between hydrogen and another atom.[9] Thus, if the reaction changes in rate when protons are replaced by deuteriums, it is reasonable to assume that the breaking of the bond to hydrogen is part of the step which determines the rate.

Uses within geology, biology and forensic science[edit]

Cosmogenic isotopes are formed by the interaction of cosmic rays with the nucleus of an atom. These can be used for dating purposes and for use as natural tracers. In addition, by careful measurement of some ratios of stable isotopes it is possible to obtain new insights into the origin of bullets, ages of ice samples, ages of rocks, and the diet of a person can be identified from a hair or other tissue sample. (See Isotope geochemistry and Isotopic signature for further details).

Biology[edit]

Within living things, isotopic labels (both radioactive and nonradioactive) can be used to probe how the complex web of reactions which makes up the metabolism of an organism converts one substance to another. For instance a green plant uses light energy to convert water and carbon dioxide into glucose by photosynthesis. If the oxygen in the water is labeled, then the label appears in the oxygen gas formed by the plant and not in the glucose formed in the chloroplasts within the plant cells.

For biochemical and physiological experiments and medical methods, a number of specific isotopes have important applications.

Stable isotopes have the advantage of not delivering a radiation dose to the system being studied; however, a significant excess of them in the organ or organism might still interfere with its functionality, and the availability of sufficient amounts for whole-animal studies is limited for many isotopes. Measurement is also difficult, and usually requires mass spectrometry to determine how much of the isotope is present in particular compounds, and there is no means of localizing measurements within the cell.

H-2 (deuterium), the stable isotope of hydrogen, is a stable tracer, the concentration of which can be measured by mass spectrometry or NMR. It is incorporated into all cellular structures. Specific deuterated compounds can also be produced.

N-15, the stable isotope of nitrogen, has also been used. It is incorporated mainly into proteins.

Radioactive isotopes have the advantages of being detectable in very low quantities, in being easily measured by scintillation counting or other radiochemical methods, and in being localizable to particular regions of a cell, and quantifiable by autoradiography. Many compounds with the radioactive atoms in specific positions can be prepared, and are widely available commercially. In high quantities they require precautions to guard the workers from the effects of radiation—and they can easily contaminate laboratory glassware and other equipment. For some isotopes the half-life is so short that preparation and measurement is difficult.

By organic synthesis it is possible to create a complex molecule with a radioactive label that can be confined to a small area of the molecule. For short-lived isotopes such as 11C, very rapid synthetic methods have been developed to permit the rapid addition of the radioactive isotope to the molecule. For instance a palladium catalysed carbonylation reaction in a microfluidic device has been used to rapidly form amides[10] and it might be possible to use this method to form radioactive imaging agents for PET imaging.[17]

³H, Tritium, the radioisotope of hydrogen, is available at very high specific activities, and compounds with this isotope in particular positions are easily prepared by standard chemical reactions such as hydrogenation of unsaturated precursors. The isotope emits very soft beta radiation, and can be detected by scintillation counting.

11C, Carbon-11 is usually produced by cyclotron bombardment of 14N with protons. The resulting nuclear reaction is 14N(p,α)11C.[11] Additionally, Carbon-11 can also be made using a cyclotron; boron in the form of boric oxide is reacted with protons in a (p,n) reaction. Another alternative route is to react 10B with deuterons. By rapid organic synthesis, the 11C compound formed in the cyclotron is converted into the imaging agent which is then used for PET.

14C, Carbon-14 can be made (as above), and it is possible to convert the target material into simple inorganic and organic compounds. In most organic synthesis work it is normal to try to create a product out of two approximately equal sized fragments and to use a convergent route, but when a radioactive label is added, it is normal to try to add the label late in the synthesis in the form of a very small fragment to the molecule to enable the radioactivity to be localised in a single group. Late addition of the label also reduces the number of synthetic stages where radioactive material is used.

18F, fluorine-18 can be made by the reaction of neon with deuterons, 20Ne reacts in a (d,4He) reaction. It is normal to use neon gas with a trace of stable fluorine (19F2). The 19F2 acts as a carrier which increases the yield of radioactivity from the cyclotron target by reducing the amount of radioactivity lost by absorption on surfaces. However, this reduction in loss is at the cost of the specific activity of the final product.

Nuclear magnetic resonance (NMR)[edit]

NMR spectroscopy uses the net spin of nuclei in a substance upon energy absorption to identify molecules. This has now become a standard spectroscopic tool within synthetic chemistry. One major use of NMR is to determine the bond connectivity within an organic molecule.

NMR imaging also uses the net spin of nuclei (commonly protons) for imaging. This is widely used for diagnostic purposes in medicine, and can provide detailed images of the inside of a person without inflicting any radiation upon them. In a medical setting, NMR is often known simply as "magnetic resonance" imaging, as the word 'nuclear' has negative connotations for many people.

References[edit]

Jump up^ [1]

Jump up^ http://nobelprize.org/nobel_prizes/chemistry/laureates/1935/joliot-fred-bio.html

Jump up^ Chmielewski, A.G. (2011). "Chemistry for the nuclear energy of the future". Nukleonika. 56 (3): 241–249.

Jump up^ Meitner L, Frisch OR (1939) Disintegration of uranium by neutrons: a new type of nuclear reaction Nature 143:239-240 [2]

Jump up^ J.H. Burns, "Solvent-extraction complexes of the uranyl ion. 2. Crystal and molecular structures of catena-bis(.mu.-di-n-butyl phosphato-O,O')dioxouranium(VI) and bis(.mu.-di-n-butyl phosphato-O,O')bis[(nitrato)(tri-n-butylphosphine oxide)dioxouranium(VI)]", Inorganic Chemistry, 1983, 22, 1174-1178

Jump up^ Decontamination of surfaces, George H. Goodalland Barry.E. Gillespie, United States Patent 4839100

Jump up^ Glänneskog H (2004) Interactions of I2 and CH3I with reactive metals under BWR severe-accident conditions Nuclear Engineering and Design 227:323-9

Glänneskog H (2005) Iodine chemistry under severe accident conditions in a nuclear power reactor, PhD thesis, Chalmers University of Technology, Sweden

For other work on the iodine chemistry which would occur during a bad accident, see [3][4][5]

Jump up^ Assuring a Future U.S.-Based Nuclear and Radiochemistry Expertise. Board on Chemical Sciences and Technology. 2012. ISBN 978-0-309-22534-2.

Jump up^ Peter Atkins and Julio de Paula, Atkins' Physical Chemistry, 8th edn (W.H. Freeman 2006), p.816-8

Jump up^ Miller PW et al. (2006) Chemical Communications 546-548

Jump up^ "Production of [11C]-Labeled Radiopharmaceuticals" (PDF). National Institute of Mental Health. Retrieved 26 September 2013.

Text books[edit]

Handbook of Nuclear Chemistry

Comprehensive handbook in six volumes by 130 international experts. Edited by Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezső G. Lovas, Frank Rösch. ISBN 978-1-4419-0721-9, Springer, 2011.

Radioactivity Radionuclides Radiation

Textbook by Magill, Galy. ISBN 3-540-21116-0, Springer, 2005.

Radiochemistry and Nuclear Chemistry

Comprehensive textbook by Choppin, Liljenenzin and Rydberg. ISBN 0-7506-7463-6, Butterworth-Heinemann, 2001 [18].

Radioactivity, Ionizing radiation and Nuclear Energy

Basic textbook for undergraduates by Jiri Hála and James D Navratil. ISBN 80-7302-053-X, Konvoj, Brno 2003 [19]

The Radiochemical Manual

Overview of the production and uses of both open and sealed sources. Edited by BJ Wilson and written by RJ Bayly, JR Catch, JC Charlton, CC Evans, TT Gorsuch, JC Maynard, LC Myerscough, GR Newbery, H Sheard, CBG Taylor and BJ Wilson. The radiochemical centre (Amersham) was sold via HMSO, 1966 (second edition)

Jan 31, 2017

0 Online Users