gibsonj338

avatar
Usernamegibsonj338
Score1904
Membership
Stats
Questions 101
Answers 460

 #5
avatar+1904 
+3
Nov 19, 2016
 #2
avatar+1904 
+3

Solve for x.

 

\(\frac{x({y}^{2}-3{y}^{2})}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(\frac{x(-2{y}^{2})}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(\frac{-2x{y}^{2}}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-\frac{2x{y}^{2}}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-\frac{1x{y}^{2}}{x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-\frac{x{y}^{2}}{x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-1{y}^{2}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-{y}^{2}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-{y}^{2}=-\frac{{y}^{3}}{(4x+y)}\)

 

\(-{y}^{2}\times(4x+y)=-\frac{{y}^{3}}{(4x+y)}\times(4x+y)\)

 

\(-{y}^{2}\times(4x+y)=-{y}^{3}\)

 

\(\frac{-{y}^{2}\times(4x+y)}{-{y}^{2}}=\frac{-{y}^{3}}{-{y}^{2}}\)

 

\(\frac{-{y}^{2}\times(4x+y)}{-{y}^{2}}=\frac{{y}^{3}}{{y}^{2}}\)

 

\(\frac{-{y}^{2}\times(4x+y)}{-{y}^{2}}={y}^{3-2}\)

 

 

\(\frac{-{y}^{2}\times(4x+y)}{-{y}^{2}}={y}^{1}\)

 

\(\frac{-{y}^{2}\times(4x+y)}{-{y}^{2}}=y\)

 

\(4x+y=y\)

 

\(4x+y-y=y-y\)

 

\(4x+0=y-y\)

 

\(4x=y-y\)

 

\(4x=0\)

 

\(\frac{4x}{4}=\frac{0}{4}\)

 

\(1x=\frac{0}{4}\)

 

\(x=\frac{0}{4}\)

 

\(x=0\)

 

Check to see if \(x=0\) is the correct solution.

 

\(\frac{x({y}^{2}-3{y}^{2})}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(\frac{0({y}^{2}-3{y}^{2})}{2\times0}=\frac{{y}^{3}}{-(4\times0+y)}\)

 

\(\frac{0(-{2y}^{2})}{2\times0}=\frac{{y}^{3}}{-(4\times0+y)}\)

 

\(\frac{0}{2\times0}=\frac{{y}^{3}}{-(4\times0+y)}\)

 

\(\frac{0}{0}=\frac{{y}^{3}}{-(4\times0+y)}\)

 

\(\frac{0}{0}=\frac{{y}^{3}}{-(0+y)}\)

 

\(\frac{0}{0}=\frac{{y}^{3}}{0-y}\)

 

\(\frac{0}{0}=\frac{{y}^{3}}{-y}\)

 

\(\frac{0}{0}=-\frac{{y}^{3}}{y}\)

 

\(\frac{0}{0}=-{y}^{3-1}\)

 

\(\frac{0}{0}=-{y}^{2}\)

 

\(Undefined=-{y}^{2}\)

 

Because both sides are not equal to each other \(x=0\) is not a solution which means that there is no solution to this problem.

 

Solve for y.

 

\(\frac{x({y}^{2}-3{y}^{2})}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(\frac{x(-2{y}^{2})}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(\frac{-2x{y}^{2}}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-\frac{2x{y}^{2}}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-\frac{1x{y}^{2}}{x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-\frac{x{y}^{2}}{x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-1{y}^{2}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-{y}^{2}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(-{y}^{2}=-\frac{{y}^{3}}{(4x+y)}\)

 

\(-{y}^{2}\times(4x+y)=-\frac{{y}^{3}}{(4x+y)}\times(4x+y)\)

 

\(-{y}^{2}\times(4x+y)=-{y}^{3}\)

 

\(-4{y}^{2}x-{y}^{3}=-{y}^{3}\)

 

\(-4{y}^{2}x-{y}^{3}+{y}^{3}=-{y}^{3}+{y}^{3}\)

 

\(-4{y}^{2}x-0=-{y}^{3}+{y}^{3}\)

 

\(-4{y}^{2}x=-{y}^{3}+{y}^{3}\)

 

\(-4{y}^{2}x=0\)

 

\(\frac{-4{y}^{2}x}{-4}=\frac{0}{-4}\)

 

\(1{y}^{2}x=\frac{0}{-4}\)

 

\({y}^{2}x=\frac{0}{-4}\)

 

\({y}^{2}x=-\frac{0}{4}\)

 

\({y}^{2}x=0\)

 

\(\frac{{y}^{2}x}{x}=\frac{0}{x}\)

 

\(1{y}^{2}=\frac{0}{x}\)

 

\({y}^{2}=\frac{0}{x}\)

 

\({y}^{2}=0\)

 

\(\sqrt{{y}^{2}}=\sqrt{0}\)

 

\(y=\sqrt{0}\)

 

\(y=0\)

 

Check to see if \(y=0\) is the correct solution.

 

\(\frac{x({y}^{2}-3{y}^{2})}{2x}=\frac{{y}^{3}}{-(4x+y)}\)

 

\(\frac{x({0}^{2}-3\times{0}^{2})}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(\frac{x(0-3\times{0}^{2})}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(\frac{x(0-3\times0)}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(\frac{x(0-0)}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(\frac{x(0)}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(\frac{0x}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(\frac{0}{2x}=\frac{{0}^{3}}{-(4x+0)}\)

 

\(0=\frac{{0}^{3}}{-(4x+0)}\)

 

\(0=\frac{0}{-(4x+0)}\)

 

\(0=\frac{0}{-4x-0}\)

 

\(0=\frac{0}{-4x}\)

 

\(0=-\frac{0}{4x}\)

 

\(0=0\)

 

Since both sides are equal \(y=0\) is a correct solution to this problem.

Nov 19, 2016