heureka

avatar
Usernameheureka
Score26375
Membership
Stats
Questions 17
Answers 5678

 #1
avatar+26375 
0

The polynomial $f(x)$ has degree 3. If
$f(-1) = 15$,
$f(0)= 0$,
$f(1) = -5$, and
$f(2) = 12$,
then what are the $x$-intercepts of the graph of $f$?

 

\(\begin{array}{|llcll|} \hline \boxed{f(x)=ax^3+bx^2+cx+d }\\\\ f(0) = 0: & 0 = a\cdot0^3+b\cdot 0^2+c\cdot 0 + d \\ & \mathbf{\boxed{d=0}} \\\\ \boxed{f(x)=ax^3+bx^2+cx+0 \\ f(x) = x(ax^2+bx+c) }\\\\ f(-1) = 15: & 15 = (-1)\left(a(-1)^2+b(-1)+c \right) \\ & 15 = (-1) (a-b+c ) \\ &\mathbf{ 15 = -a+b-c \qquad (1) } \\ f(1) = -5: & -5 = 1\cdot\left(a(1)^2+b(1)+c \right) \\ &\mathbf{ -5 = a+b+c \qquad (2) }\\\\ (1)+(2): & 15-5 =b+b \\ & 10 = 2b \\ & \mathbf{\boxed{b=5}} \\\\ \text{see }(1): & 15 = -a+b-c \quad b=5 \\ & 15 = -a+5-c \\ & 10 = -a-c \\ & \mathbf{c = -10-a \qquad (3)} \\\\ \boxed{f(x) = x(ax^2+bx+c) \\ f(x)=x(ax^2+5x-10-a)} \\\\ f(2) = 12: & 12 = 2\cdot(a\cdot2^2+5\cdot 2-10-a ) \\ & 6 = 4a-a \\ & 6 = 3a \\ & \mathbf{\boxed{a=2}} \\\\ \text{see }(3): & c = -10-a \quad a=2 \\ & c = -10-2 \\ & \mathbf{\boxed{c=-12}} \\ \hline \end{array}\)

 

\(\text{The polynomial $f(x)$ of degree $3$ is:} \\ \boxed{f(x) = 2x^3 + 5x^2-12x \\ f(x) = x(2x^2+5x-12) }\)

 

\(\text{x-intercepts $f(x) = 0\ ?$}\\ \begin{array}{|rcll|} \hline \boxed{ f(x) = x(2x^2+5x-12) }\\\\ 0 &=& x(2x^2+5x-12) \\ \mathbf{x_1} &\mathbf{=}&\mathbf{ 0} \\\\ 2x^2+5x-12 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot 2\cdot (-12) } }{2\cdot 2} \\ x &=& \dfrac{-5\pm \sqrt{25+96 } }{4} \\ x &=& \dfrac{-5\pm \sqrt{121} }{4} \\ x &=& \dfrac{-5\pm 11 }{4} \\\\ x_2 &=& \dfrac{-5+ 11 }{4} \\ x_2 &=& \dfrac{6}{4} \\ \mathbf{x_2} & \mathbf{=}& \mathbf{ 1.5 } \\\\ x_3 &=& \dfrac{-5- 11 }{4} \\ x_3 &=& -\dfrac{16}{4} \\ \mathbf{x_3} & \mathbf{=}& \mathbf{ -4 } \\ \hline \end{array} \)

 

The x-intrcepts are: \( x=-4,\ x=0,\ x=1.5\)

 

The graph:

 

laugh

Jul 31, 2018
 #2
avatar+26375 
0

If the permutations of the first 5 letters, a, b, c, d, e,

are arranged in alphabetical order from the beginning to the end,

then what is the alphabetical order of the 77th term? How about the 100th term?

 

sorted...

\(\begin{array}{|rcll|} \hline 1.& abcde \\ 2.& abced \\ 3.& abdce \\ 4.& abdec \\ 5.& abecd \\ 6.& abedc \\ 7.& acbde \\ 8.& acbed \\ 9.& acdbe \\ 10.& acdeb \\ 11.& acebd \\ 12.& acedb \\ 13.& adbce \\ 14.& adbec \\ 15.& adcbe \\ 16.& adceb \\ 17.& adebc \\ 18.& adecb \\ 19.& aebcd \\ 20.& aebdc \\ 21.& aecbd \\ 22.& aecdb \\ 23.& aedbc \\ 24.& aedcb \\ 25.& bacde \\ 26.& baced \\ 27.& badce \\ 28.& badec \\ 29.& baecd \\ 30.& baedc \\ \hline \end{array} \begin{array}{|rcll|} \hline 31.& bcade \\ 32.& bcaed \\ 33.& bcdae \\ 34.& bcdea \\ 35.& bcead \\ 36.& bceda \\ 37.& bdace \\ 38.& bdaec \\ 39.& bdcae \\ 40.& bdcea \\ 41.& bdeac \\ 42.& bdeca \\ 43.& beacd \\ 44.& beadc \\ 45.& becad \\ 46.& becda \\ 47.& bedac \\ 48.& bedca \\ 49.& cabde \\ 50.& cabed \\ 51.& cadbe \\ 52.& cadeb \\ 53.& caebd \\ 54.& caedb \\ 55.& cbade \\ 56.& cbaed \\ 57.& cbdae \\ 58.& cbdea \\ 59.& cbead \\ 60.& cbeda \\ \hline \end{array} \begin{array}{|rcll|} \hline 61.& cdabe \\ 62.& cdaeb \\ 63.& cdbae \\ 64.& cdbea \\ 65.& cdeab \\ 66.& cdeba \\ 67.& ceabd \\ 68.& ceadb \\ 69.& cebad \\ 70.& cebda \\ 71.& cedab \\ 72.& cedba \\ 73.& dabce \\ 74.& dabec \\ 75.& dacbe \\ 76.& daceb \\ \color{red}77.& \huge{\color{red}daebc} \\ 78.& daecb \\ 79.& dbace \\ 80.& dbaec \\ 81.& dbcae \\ 82.& dbcea \\ 83.& dbeac \\ 84.& dbeca \\ 85.& dcabe \\ 86.& dcaeb \\ 87.& dcbae \\ 88.& dcbea \\ 89.& dceab \\ 90.& dceba \\ \hline \end{array} \begin{array}{|rcll|} \hline 91.& deabc \\ 92.& deacb \\ 93.& debac \\ 94.& debca \\ 95.& decab \\ 96.& decba \\ 97.& eabcd \\ 98.& eabdc \\ 99.& eacbd \\ \color{red}100.& \huge{\color{red}eacdb } \\ 101.& eadbc \\ 102.& eadcb \\ 103.& ebacd \\ 104.& ebadc \\ 105.& ebcad \\ 106.& ebcda \\ 107.& ebdac \\ 108.& ebdca \\ 109.& ecabd \\ 110.& ecadb \\ 111.& ecbad \\ 112.& ecbda \\ 113.& ecdab \\ 114.& ecdba \\ 115.& edabc \\ 116.& edacb \\ 117.& edbac \\ 118.& edbca \\ 119.& edcab \\ 120.& edcba \\ \hline \end{array} % % // ======================================================================= \begin{array}{|rcll|} \hline \hline \end{array} % % // ======================================================================= \begin{array}{|rcll|} \hline \hline \end{array} % % // ======================================================================= \begin{array}{|rcll|} \hline \hline \end{array}\)

 

laugh

Jul 30, 2018
 #1
avatar+26375 
+1

What is the residue modulo 16 of the sum of the modulo 16 inverses of the first 8 positive odd integers?

Express your answer as an integer from 0 to 15, inclusive.

 

\(\begin{array}{|lrcl|} \hline \gcd(1,16)=\gcd(3,16)=\gcd(5,16)=\gcd(7,16) \\ =\gcd(9,16)=\gcd(11,16)=\gcd(13,16)=\gcd(15,16)=1 \\\\ \begin{array}{|rcl|} \hline \phi(16)&=& 16\cdot\left(1-\dfrac12 \right) \\ &=& 8 \\ \hline \end{array} \\ \hline \end{array} \)

 

 

\(\begin{array}{|rcll|} \hline && \Big( 1^{-1} \pmod {16} + 3^{-1} \pmod {16} + 5^{-1} \pmod {16} \\ && + 7^{-1} \pmod {16} + 9^{-1} \pmod {16} + 11^{-1} \pmod {16} \\ && + 13^{-1} \pmod {16} + 15^{-1} \pmod {16} \Big) \pmod {16} \\\\ &=& \Big( 1^{\phi(16)-1} \pmod {16} + 3^{\phi(16)-1} \pmod {16} + 5^{\phi(16)-1} \pmod {16} \\ && + 7^{\phi(16)-1} \pmod {16} + 9^{\phi(16)-1} \pmod {16} + 11^{\phi(16)-1} \pmod {16} \\ && + 13^{\phi(16)-1} \pmod {16} + 15^{\phi(16)-1} \pmod {16} \Big) \pmod {16} \\\\ &=& \Big( 1^{8-1} \pmod {16} + 3^{8-1} \pmod {16} + 5^{8-1} \pmod {16} \\ && + 7^{8-1} \pmod {16} + 9^{8-1} \pmod {16} + 11^{8-1} \pmod {16} \\ && + 13^{8-1} \pmod {16} + 15^{8-1} \pmod {16} \Big) \pmod {16} \\\\ &=& \Big( 1^{7} \pmod {16} + 3^{7} \pmod {16} + 5^{7} \pmod {16} \\ && + 7^{7} \pmod {16} + 9^{7} \pmod {16} + 11^{7} \pmod {16} \\ && + 13^{7} \pmod {16} + 15^{7} \pmod {16} \Big) \pmod {16} \\\\ &=& ( 1^{7}+ 3^{7} + 5^{7} + 7^{7} + 9^{7}+ 11^{7} + 13^{7}+ 15^{7} ) \pmod {16} \\\\ &=& ( 1+ 2187 + 78125 + 823543 + 4782969 \\ && + 19487171 + 62748517+ 170859375 ) \pmod {16} \\\\ &=& 258781888 \pmod {16} \\\\ &=& 16173868\cdot 16 \pmod {16} \\\\ &\mathbf{=}&\mathbf{ 0 \pmod {16} } \\ \hline \end{array}\)

 

laugh

Jul 30, 2018