+0  
 
0
54
1
avatar+216 

Q1)

Q2)

Q3)

Johnnyboy  Oct 30, 2018

Best Answer 

 #1
avatar+307 
+2

A1) We want \(g^2-2g-24≠ 0\) so we will find when \(g^2-2g-24= 0\) so  \(g = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

\(g1=\frac{2+\sqrt{2^2-4(1)(-24)}}{2(1)}\)<=>\(g1=\frac{2+\sqrt{100}}{2}\)=\(\frac{2+10}{2}=\frac{12}{2}=6\) and

\(g2=\frac{2-\sqrt{2^2-4(1)(-24)}}{2(1)}\)<=>\(g2=\frac{2-\sqrt{100}}{2}=\frac{2-10}{2}=\frac{-8}{2}=-4\)

Finally \(g1=6,g2=-4\) so We want \(g^2-2g-24≠ 0\) so \(g≠ 6,g≠ -4\)

 

A2) \(\frac{(x+9)(x-2)}{(x-2)(2+x)}=\frac{(x+9)}{(2+x)}\times\frac{(x-2)}{(x-2)}=\frac{(x+9)}{(2+x)}\times1=\frac{(x+9)}{(2+x)}\)Correct the 3rd answer BUT we assume that the equation is well defined and \(x≠ 2\)

 

A3)\(\frac{9-x^2}{9x+27}=\frac{(3+x)(3-x)}{(9)(x+3)}=\frac{(x+3)(3-x)}{(9)(x+3)}=\frac{3-x}{9}\times\frac{(x+3)}{(x+3)}=\frac{3-x}{9}\times1=\frac{3-x}{9}\) BUT  like before we assume that the equation is well defined and \(x≠3\)

 

Hope this helps!

Dimitristhym  Oct 30, 2018
 #1
avatar+307 
+2
Best Answer

A1) We want \(g^2-2g-24≠ 0\) so we will find when \(g^2-2g-24= 0\) so  \(g = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

\(g1=\frac{2+\sqrt{2^2-4(1)(-24)}}{2(1)}\)<=>\(g1=\frac{2+\sqrt{100}}{2}\)=\(\frac{2+10}{2}=\frac{12}{2}=6\) and

\(g2=\frac{2-\sqrt{2^2-4(1)(-24)}}{2(1)}\)<=>\(g2=\frac{2-\sqrt{100}}{2}=\frac{2-10}{2}=\frac{-8}{2}=-4\)

Finally \(g1=6,g2=-4\) so We want \(g^2-2g-24≠ 0\) so \(g≠ 6,g≠ -4\)

 

A2) \(\frac{(x+9)(x-2)}{(x-2)(2+x)}=\frac{(x+9)}{(2+x)}\times\frac{(x-2)}{(x-2)}=\frac{(x+9)}{(2+x)}\times1=\frac{(x+9)}{(2+x)}\)Correct the 3rd answer BUT we assume that the equation is well defined and \(x≠ 2\)

 

A3)\(\frac{9-x^2}{9x+27}=\frac{(3+x)(3-x)}{(9)(x+3)}=\frac{(x+3)(3-x)}{(9)(x+3)}=\frac{3-x}{9}\times\frac{(x+3)}{(x+3)}=\frac{3-x}{9}\times1=\frac{3-x}{9}\) BUT  like before we assume that the equation is well defined and \(x≠3\)

 

Hope this helps!

Dimitristhym  Oct 30, 2018

35 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.