+0  
 
+5
795
2
avatar

which ordered par is the solution of x-6y=10 and 2x-2y=10?

 Apr 13, 2016
 #1
avatar+37157 
+5

x-6y=10 and 2x-2y=10     Multiply BOTH sides of the first eq by -2 to get

12y-2x=-20     then add to the second equation to get

10y = -10

y=-1

 

Sustitute y=-1 into one of the equations

x- 6(-1) = 10

x+6 =10

x=4

 Apr 13, 2016
 #2
avatar+1904 
0

\(x-6y=10\)  \(2x-2y=10\)

 

There are two ways to do it: by substitution and by subtraction

 

By substitution using the first equation first:

 

\(x-6y=10\)

 

\(x=10+6y\)

 

Substitute the \(x\) in the second equation with \(10+6y\)

 

\(2(10+6y)-2y=10\)

 

\(20+12y-2y=10\)

 

\(20+10y=10\)

 

\(10y=-10\)

 

\(y=-1\)

 

Substitute the \(y\) in the first equation with \(-1\)

 

\(x-6(-1)=10\)

 

\(x+6=10\)

 

\(x=4\)

 

\((-1,4)\)

 

OR

 

Substitute the \(y\) in the second equation with \(-1\)

 

\(2x-2(-1)=10\)

 

\(2x+2=10\)

 

\(2x=8\)

 

\(x=4\)

 

\((-1,4)\)

 

By substitution using the first equation second:  

 

\(x-6y=10\)

 

\(-6y=10-x\)

 

\(y=\frac{10-x}{-6}\)

 

Substitute the \(y\) in the second equation with \(\frac{10-x}{-6}\)

 

\(2x-2(\frac{10-x}{-6})=10\)

 

\(2x+\frac{10-x}{3}=10\)

 

\(\frac{10-x}{3}=10-2x\)

 

\(10-x=30-6x\)

 

\(-x=20-6x\)

 

\(-x+6x=20\)

 

\(5x=20\)

 

\(x=4\)

 

Substitute the \(x\) in the first equation with \(4\)

 

\(4-6y=10\)

 

\(-6y=6\)

 

\(y=-1\)

 

\((4,-1)\)

 

OR

 

Substitute the \(x\) in the second equation with \(4\)

 

\(2(4)-2y=10\)

 

\(8-2y=10\)

 

\(-2y=2\)

 

\(y=-1\)

 

\((4,-1)\)

 

By substitution using the second equation first:

 

\(2x-2y=10\)

 

\(2x=10+2y\)

 

\(x=\frac{10+2y}{2}\)

 

\(x=5+y\)

 

Substitute the \(x\) in the first equation with \(5+y\)

 

\(5+y-6y=10\)

 

\(5-5y=10\)

 

\(-5y=5\)

 

\(y=-1\)

 

Substitute the \(y\) in the second equation with \(-1\)

 

\(2x-2(-1)=10\)

 

\(2x+2=10\)

 

\(2x=8\)

 

\(x=4\)

 

\((4,-1)\)

 

OR

 

Substitute the \(y\) in the first equation with \(-1\)

 

\(x-6(-1)=10\)

 

\(x+6=10\)

 

\(x=4\)

 

\((4,-1)\)

 

By subtracton by subtracting the second equation from the first equation:

 

     \(x-6y=10\)

-  \(2x-2y=10\)

--------------------------

   \(-x-4y=0\)

 

\(-x=0+4y\)

 

\(-x=4y\)

 

\(x=-4y\)

 

Substitute the \(x\) in the first equation with \(-4y\)

 

\(-4y-6y=10\)

 

\(-10y=10\)

 

\(y=-1\)

 

Substitute the \(y\) in the second equation with \(-1\)

 

 

\(2x-2(-1)=10\)

 

\(2x+2=10\)

 

\(2x=8\)

 

\(x=4\)

 

\((4,-1)\)

 

OR

 

Substitute the \(x\) in the second equation with \(-4y\)

 

\(2(-4y)-2y=10\)

 

\(-8y-2y=10\)

 

\(-10y=10\)

 

\(y=-1\)

 

Substitute the \(y\) in the first equation with \(-1\)

 

\(x-6(-1)=10\)

 

\(x+6=10\)

 

\(x=4\)

 

\((4,-1)\)

 

By subtracton by subtracting the first equation from the second equation:

 

  \(2x-2y=10\)

-  \(x-6y=10\)

--------------------------

   \(x+4y=0\)

 

\(x=0-4y\)

 

\(x=-4y\)

 

Substitute the \(x\) in the first equation with \(-4y\)

 

\(-4y-6y=10\)

 

\(-10y=10\)

 

\(y=-1\)

 

Substitute the \(y\) in the second equation with \(-1\)

 

 

\(2x-2(-1)=10\)

 

\(2x+2=10\)

 

\(2x=8\)

 

\(x=4\)

 

\((4,-1)\)

 

OR

 

Substitute the \(x\) in the second equation with \(-4y\)

 

\(2(-4y)-2y=10\)

 

\(-8y-2y=10\)

 

\(-10y=10\)

 

\(y=-1\)

 

Substitute the \(y\) in the first equation with \(-1\)

 

\(x-6(-1)=10\)

 

\(x+6=10\)

 

\(x=4\)

 

\((4,-1)\)

 Apr 13, 2016

1 Online Users