Questions   
Sort: 
 #1
avatar+26388 
+2

Let
\(f(x)=(x^2+6x+9)^{50}-4x+3\), and let \(r_1,r_2,\ldots,r_{100}\) be the roots of \(f(x)\).


Compute \((r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}\).

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x)} &=& \mathbf{(x^2+6x+9)^{50}-4x+3} \\ &=& \left((x+3)^2\right)^{50}-4x+3 \\ \mathbf{f(x)} &=& \mathbf{\left( x+3 \right)^{100}-4x+3} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & f(r_1) =0 &=& \left( r_1+3 \right)^{100}-4r_1+3 \\ & f(r_2) =0 &=& \left( r_2+3 \right)^{100}-4r_2+3 \\ & \ldots \\ & f(r_{100}) =0 &=& \left( r_{100}+3 \right)^{100}-4r_{100}+3 \\ & \hline \\ \text{sum} & 0 &=& (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} \\ & && -4(r_1+r_2+\ldots + r_{100}) + 3\cdot 100 \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(r_1+r_2+\ldots + r_{100}) - 300 \\ \hline \end{array}\)

 

\(\mathbf{\text{vieta:}}\)
For any polynomial equation
\(0=x^n+a_{n-1}·x^{n-1}+...+a_2·x^2+a_1·x^1+a_0\)
with the solutions \(r_1\dots r_n\), the relatively simple formulas for \(a_0\) and \(a_{n-1}\) are:
\(a_0=(-1)^n \prod\limits_{k=1}^{n} r_k \\ a_{n-1}= -\sum \limits_{k=1}^{n} r_k\)

 

\(\begin{array}{|rcll|} \hline && \left( x+3 \right)^{100} \\ \\ &=& x^{100} + \binom{100}{1}x^{99}\cdot 3 + \ldots \\ \\ &=& x^{100} + \underbrace{300}_{ \underbrace{=a_{n-1}}_{= -(r_1+r_2+\ldots + r_{100})}} x^{99} + \ldots \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(r_1+r_2+\ldots + r_{100}) - 300 \\ && \boxed{r_1+r_2+\ldots + r_{100} = -300} \\ (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(-300) - 300 \\ \mathbf{(r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}} &=& \mathbf{-1500} \\ \hline \end{array}\)

 

laugh

May 27, 2020
 #1
avatar+26388 
+3

Four red candies and three green candies can be combined to make many different “flavors.”
Flavors are different if the percent red is different,
so “3 red / 0 green” is the same flavor as “2 red / 0 green,”
and likewise “4 red / 2 green” is the same flavor as “2 red / 1 green.”
If a flavor is to be made using some or all of the seven candies,
how many different flavors are possible?

 

\(\begin{array}{|c|c|c|c|c|} \hline & {\color{green}0} & {\color{green}1} &{\color{green}2} &{\color{green}3} \\ \hline {\color{red}0} & - & 0+1=1 & 0+2=2 & 0+3=3 \\ & & \frac{{\color{red}0}}{1}: \frac{{\color{green}1}}{1} &\frac{{\color{red}0}}{2}: \frac{{\color{green}2}}{2}&\frac{{\color{red}0}}{3}: \frac{{\color{green}3}}{3}\\ & & {\color{red}0}: {\color{green}1} & {\color{red}0}: {\color{green}1}&{\color{red}0}: {\color{green}1}\\ \hline {\color{red}1} & 1+0=1 & 1+1=2 & 1+2=3 & 1+3=4 \\ & \frac{{\color{red}1}}{1}: \frac{{\color{green}0}}{1} & \frac{{\color{red}1}}{2}: \frac{{\color{green}1}}{2} &\frac{{\color{red}1}}{3}: \frac{{\color{green}2}}{3}&\frac{{\color{red}1}}{4}: \frac{{\color{green}3}}{4}\\ & {\color{red}1}: {\color{green}0} & \\ \hline {\color{red}2} & 2+0=2 & 2+1=3 & 2+2=4 & 2+3=5 \\ & \frac{{\color{red}2}}{2}: \frac{{\color{green}0}}{2} & \frac{{\color{red}2}}{3}: \frac{{\color{green}1}}{3} &\frac{{\color{red}2}}{4}: \frac{{\color{green}2}}{4}&\frac{{\color{red}2}}{5}: \frac{{\color{green}3}}{5}\\ & {\color{red}1}: {\color{green}0} & &\frac{{\color{red}1}}{2}: \frac{{\color{green}1}}{2} \\ \hline {\color{red}3} & 3+0=3 & 3+1=4 & 3+2=5 & 3+3=6 \\ & \frac{{\color{red}3}}{3}: \frac{{\color{green}0}}{3} & \frac{{\color{red}3}}{4}: \frac{{\color{green}1}}{4} &\frac{{\color{red}3}}{5}: \frac{{\color{green}2}}{5}&\frac{{\color{red}3}}{6}: \frac{{\color{green}3}}{6}\\ & {\color{red}1}: {\color{green}0} & & &\frac{{\color{red}1}}{2}: \frac{{\color{green}1}}{2}\\ \hline {\color{red}4} & 4+0=4 & 4+1=5 & 4+2=6 & 4+3=7 \\ & \frac{{\color{red}4}}{4}: \frac{{\color{green}0}}{4} & \frac{{\color{red}4}}{5}: \frac{{\color{green}1}}{5} &\frac{{\color{red}4}}{6}: \frac{{\color{green}2}}{6}&\frac{{\color{red}4}}{7}: \frac{{\color{green}3}}{7}\\ & {\color{red}1}: {\color{green}0} & &\frac{{\color{red}2}}{3}: \frac{{\color{green}1}}{3} \\ \hline \end{array}\)

 

The percent red

\(\begin{array}{|c|c|c|c|c|} \hline & {\color{green}0} & {\color{green}1} &{\color{green}2} &{\color{green}3} \\ \hline {\color{red}0} & & {\color{red}0} & {\color{red}0}&{\color{red}0}\\ \hline {\color{red}1} & {\color{red}1} & \frac{{\color{red}1}}{2} &\frac{{\color{red}1}}{3}&\frac{{\color{red}1}}{4} \\ \hline {\color{red}2} & {\color{red}1} & \frac{{\color{red}2}}{3} &\frac{{\color{red}1}}{2}&\frac{{\color{red}2}}{5} \\ \hline {\color{red}3} & {\color{red}1} & \frac{{\color{red}3}}{4} &\frac{{\color{red}3}}{5} &\frac{{\color{red}1}}{2} \\ \hline {\color{red}4} & {\color{red}1} & \frac{{\color{red}4}}{5}&\frac{{\color{red}2}}{3}&\frac{{\color{red}4}}{7} \\ \hline \end{array}\)

 

The different flavors are \(\{ {\color{red}0},\ \frac{{\color{red}1}}{4},\ \frac{{\color{red}1}}{3},\ \frac{{\color{red}2}}{5},\ \frac{{\color{red}1}}{2},\ \frac{{\color{red}3}}{5},\ \frac{{\color{red}4}}{7},\ \frac{{\color{red}2}}{3},\ \frac{{\color{red}3}}{4},\ \frac{{\color{red}4}}{5},\ {\color{red}1} \} \)

 

laugh

May 27, 2020
 #2
avatar
+1
May 27, 2020

3 Online Users