Find the ordered triplet (x,y,z) for the system of equations.
Hello Guest!
\(x + 3y + 2z = 1\ |\ \times 2\)
-3x + y + 5z = 10
-2x + 3y + z = 7
\(2x+6y+4z=2\)
\(\underline{-2x + 3y + z = 7}\)
\(9y+5z=9\ |\ \times 10\)
\(x + 3y + 2z = 1\ |\ \times 3\\ \ \\ 3x+9y+6z=3\)
\( \underline{ -3x + y + 5z = 10}\)
\(10y+11z=13\ |\ \times 9\)
\(90y+50z=90\)
\(\underline{90y+99z=117}\)
\(49z=27\)
\(z=\dfrac{27}{49}\)
\(10y+11z=13\ |\ insert\ z\)
\(10y+\dfrac{11\cdot 27}{49}=13\\ 490y=13\cdot49-11\cdot 27=340\)
\(y=\dfrac{34}{49}\)
\(x + 3y + 2z = 1\\ x=1-3y-2z\ |\ insert\ y\ and\ z\\ x=1-\frac{3\cdot 34}{49}-\frac{2\cdot 27}{49}\\ 49x=49-3\cdot 34-2\cdot27\\ 49x=-107\)
\(x=-\dfrac{107}{49}\)
\((x,y,z)=(-\dfrac{107}{49},\dfrac{34}{49},\dfrac{27}{49})\)
!