Questions   
Sort: 
 #1
avatar+611 
+2

Analyze Triangle Properties:

 

We are given that triangle ABC is a right triangle with angle A = 30 degrees and angle C = 90 degrees. This makes angle B = 60 degrees (since the angles in a triangle sum to 180 degrees).

 

Since BD bisects angle ABC, we know that angles ABD and CBD are both equal to half of angle ABC, which is 30 degrees.

 

Utilize Isosceles Triangle Property:

 

Because BD bisects angle B and is perpendicular to side AC (since AC is the hypotenuse of right triangle ABC), segment BD also bisects side AC. This makes triangles ABD and BDC congruent.

 

Find Lengths in Triangle ABD:

 

Knowing AC = 12 and that BD bisects AC, we can determine that AD = DC = 12 / 2 = 6.

 

Apply Area Formula for Triangle ABD:

 

The area of a triangle can be calculated using the formula: Area = 1/2 * base * height.

 

In triangle ABD, we know the base (AB) is part of the hypotenuse of right triangle ABC. Since angle A = 30 degrees, we can use the 30-60-90 right triangle properties to find that AB = 2 * AC = 2 * 12 = 24.

 

The height of triangle ABD is the perpendicular distance from point D to side AB. Since BD is perpendicular to AC, the height is the same length as segment BD. However, we haven't yet determined the length of BD.

 

Find BD using Pythagorean Theorem:

 

Since triangle ABD is a right triangle with AB = 24 and AD = 6, we can use the Pythagorean Theorem to find BD (the hypotenuse):

 

BD^2 = AB^2 - AD^2 BD^2 = 24^2 - 6^2 BD^2 = 576 - 36 BD^2 = 540 BD = √540 (Since we want the positive side length)

 

However, working with the square root of 540 might be cumbersome. We can simplify this by noticing that 540 can be factored as 2^2 * 3^3 * 5. Taking the square root of both sides:

 

BD = √(2^2 * 3^3 * 5) = 2 * 3 * √5

 

Calculate Area of Triangle ABD:

 

Now that we know all side lengths, we can find the area of triangle ABD:

 

Area = 1/2 * base * height

 

Area = 1/2 * 24 * (2 * 3 * √5)

 

Area = 72 * √5

Apr 15, 2024
Apr 14, 2024
 #1
avatar+611 
0
Apr 14, 2024
 #1
avatar+1911 
+1

Since a rotation about point O maps A to B, B to C, and C to D, we know the following:

 

Angle AOD: This is given as 24 degrees.

 

Full Rotation: A full rotation around a point is 360 degrees.

 

Possible Rotations:

 

There are three possibilities for the rotation that maps A to B, B to C, and C to D, resulting in three possible measures for angle AOB:

 

Case 1: Single Rotation of 24 Degrees

 

In this case, the rotation about O maps A to B by 24 degrees clockwise, B to C by 24 degrees clockwise, and C to D by 24 degrees

clockwise, resulting in a total rotation of A to D of 24 + 24 + 24 = 72 degrees.

 

Since the full rotation is 360 degrees, the remaining angle for AOB must be 360 - 72 = 288 degrees.

 

However, angle measures are typically represented between 0 and 180 degrees. We can achieve this by subtracting a multiple of 180 (full rotations) from 288:

 

AOB = 288° - 180 = 108.

 

Case 2: Double Rotation (360 + 24 Degrees)

 

Here, the rotation about O maps A to B by a full rotation (360 degrees) followed by a 24-degree clockwise rotation. This effectively brings B back to its original position and then continues the rotation to C and D.

 

The total rotation for AOD in this case becomes 360 + 24 + 24 = 408 degrees.

 

Similar to case 1, we can adjust this to fit the 0-180 degree range:

 

AOB = 408° - 360° = 48°

 

Case 3: Triple Rotation (2 * 360 + 24 Degrees)

 

This case involves two full rotations followed by a 24-degree clockwise rotation from A to B. Again, the first two rotations effectively bring B back to its original position.

 

The total rotation for AOD becomes 2 * 360 + 24 = 744 degrees.

 

Adjusting for the 0-180 degree range:

 

AOB = 744° - 2 * 360° = 124°

 

Summary:

 

Therefore, the three possible degree measures for angle AOB, considering rotations between 0 and 180 degrees, are:

 

108° (Case 1)

 

48° (Case 2)

 

124° (Case 3)

Apr 14, 2024
 #1
avatar+1911 
0

Understanding the Transformations:

 

Tasha's Transformation: Moves the point sqrt(2) units to the right.

 

Richard's Transformation: Rotates the point clockwise about point O by 90 degrees.

 

Round 1:

 

A' is sqrt(2) units to the right of A (Tasha's translation).

 

A" is obtained by rotating A' by 90 degrees clockwise around O (Richard's rotation).

 

Round 2:

 

A1 is obtained by rotating A by 90 degrees clockwise around O (Richard's rotation).

 

A2 is sqrt(2) units to the right of A1 (Tasha's translation).

 

Finding A"A2:

 

To find the distance between A" and A2, we can consider the following:

 

A" and A1 are the same distance away from O (since both are obtained by a 90-degree rotation from A and they share the same original distance from O).

 

A'A2 forms a right triangle with A"A1 as the hypotenuse (due to the 90-degree rotations).

 

Pythagorean Theorem:

 

We can use the Pythagorean theorem to find A"A2:

 

a^2 + b^2 = c^2

 

where:

 

a = A'A2 (we know this is sqrt(2) from Tasha's translation)

 

b = A"A1 (distance between A" and A1, which is the same as the distance between A and O, which is sqrt(3))

 

c = A"A2 (what we want to find)

 

Substituting Values:

 

(sqrt(2))^2 + (sqrt(3))^2 = (A"A2)^2

 

2 + 3 = (A"A2)^2

 

5 = (A"A2)^2

 

Taking the Square Root (consider both positive and negative):

 

A"A2 = ±√5

 

Since distance cannot be negative, we take the positive square root:

 

A"A2 = √5

 

Therefore, the distance between A" and A2 is √5 units.

Apr 14, 2024
 #1
avatar+1911 
0

This is a series where the numerator follows the Fibonacci sequence and the denominator is a geometric sequence with common ratio 1/10. To find the sum of such a series, we can use a technique involving manipulation and summation of geometric series.

 

Here's how to solve it:

 

Step 1: Splitting the Series

 

We can represent the series as the sum of two series:

 

S = (1/10^2 + 1/10^3 + 1/10^4 + ...) + (2/10^4 + 3/10^5 + 5/10^6 + ...)

 

Step 2: Recognizing Geometric Series

 

The first series is a geometric series with first term (a = 1/10^2) and common ratio (r = 1/10). The second series is another geometric series with first term (a = 2/10^4) and common ratio (r = 1/10).

 

Step 3: Find the Sum of Each Series

 

The formula for the sum (Sn) of a finite geometric series is:

 

Sn = a(1 - r^n) / (1 - r)

 

where:

 

a is the first term

 

r is the common ratio

 

n is the number of terms

 

Step 4: Apply the Formula to Each Series

 

First Series:

 

S1 = (1/10^2) * (1 - (1/10)^n) / (1 - 1/10)

 

Second Series:

 

S2 = (2/10^4) * (1 - (1/10)^n) / (1 - 1/10)

 

Step 5: Note on Infinite Series

 

Since we're dealing with an infinite series (n tends to infinity), both (1/10)^n terms in the numerators approach zero. Therefore, we can simplify the expressions:

 

S1 ≈ (1/10^2) * (1 - 0) / (1 - 1/10) = 1/100

 

S2 ≈ (2/10^4) * (1 - 0) / (1 - 1/10) = 1/50

 

Step 6: Sum the Simplified Series

 

The total sum (S) of the original series is the sum of S1 and S2:

 

S = S1 + S2 ≈ 1/100 + 1/50 = 3/100

 

Answer:

 

Therefore, the sum of the series is 3/100.

Apr 14, 2024
 #2
avatar+1911 
0

The strategy here is to calculate the probability of the event's complement (i.e., the probability that the coin is tossed ten times or fewer) and subtract this from 1.

 

Favorable Outcomes:

 

There are two favorable outcomes:

 

HHH appears in exactly 10 flips: There are 3 choices for the position of the first heads (leaving 9 flips remaining), then 2 choices for the second heads (leaving 8 flips remaining), and 1 choice for the third heads (leaving 7 flips remaining).

 

So, there are 3⋅2⋅1=6 successful outcomes where HHH appears in exactly 10 flips.

 

TTT appears in exactly 10 flips: This follows the same logic as scenario 1, so there are also 6 successful outcomes.

 

Total Favorable Outcomes:

 

There are a total of 6 + 6 = 12 successful outcomes where the coin is tossed exactly 10 times.

 

Total Outcomes:

 

Since the coin is fair, there are 210=1024 total possible outcomes for 10 flips (heads or tails for each flip).

 

Probability of Favorable Outcomes:

 

The probability of needing exactly 10 flips is the number of successful outcomes divided by the total number of outcomes:

 

P(exactly 10 flips) = 12 / 1024

 

Complement's Probability:

 

We want the probability of needing more than 10 flips. This is the complement of the event where the coin is tossed ten times or fewer.

 

P(more than 10 flips) = 1 - P(exactly 10 flips)

 

Final Answer:

 

Substitute the probability of needing exactly 10 flips:

 

P(more than 10 flips) = 1 - (12 / 1024)

 

Simplify:

 

P(more than 10 flips) = (1024 - 12) / 1024 = 1012 / 1024

 

Both the numerator and denominator have a common divisor of 4, so we can simplify:

 

P(more than 10 flips) = 253 / 256

 

Therefore, the probability of needing more than 10 flips is 253/256.

Apr 14, 2024
 #3
 #2
avatar+1537 
0

For question 1:

 

Here's how to find the number of positive five-digit integers containing the digit grouping "24" at least once:

 

Total Possible Numbers:

 

There are 9 choices (excluding 0) for each digit in a five-digit number (1, 2, 3, 4, 5, 6, 7, 8, 9).

 

So, the total number of possible five-digit positive integers is 9 * 9 * 9 * 9 * 9 = 59,049.

 

Unwanted Scenarios (Numbers without "24"):

 

No "24" group: There are 8 choices for the digit in the place where "24" could be (all digits except 2 and 4). For the remaining 4 digits, there are 9 choices each. So, there are 8 * 9 * 9 * 9 = 5832 cases where "24" doesn't appear in any of the five digits.

 

"24" only appears once, but not next to each other:

 

Choose the digit that will be between "2" and "4": There are 7 choices (all digits except 0, 2, and 4).

 

Choose the positions for "2" and "4" (not next to each other): There are 4 choices for the first position (remaining slots after fixing one digit). There are 3 choices for the second position (remaining slots after fixing the first and the middle digit). So, there are 4 * 3 = 12 ways to arrange "2" and "4" with another digit in between.

 

Choose the remaining 2 digits: There are 9 choices each.

 

Total unwanted cases with "24" not next to each other: 7 * 12 * 9 * 9 = 5832.

 

Total Numbers with "24" at least once:

 

We want to find the number with "24" at least once. So, subtract the unwanted cases from the total:

 

Total numbers - Unwanted cases = Numbers with "24"

 

59,049 - (5832 + 5832) = 47,385

 

Therefore, there are 47,385 positive five-digit integers containing the digit grouping "24" at least once.

Apr 14, 2024
 #2
avatar+1537 
0

We can solve this problem using the properties of isosceles triangles and the Pythagorean theorem.

 

Isosceles Triangle Properties:

 

Since AB = AC in an isosceles triangle ABC, angles B and C are congruent.

 

Dividing the Base:

 

The height from A to BC is the perpendicular bisector of the base (divides it into two segments of equal length) in an isosceles triangle.

 

Segment Lengths:

 

Given that BC = 8 cm and BD = 3 cm, we know DC = BC - BD = 8 cm - 3 cm = 5 cm.

 

Finding the Height:

 

We can use the Pythagorean theorem on right triangle ABD (since the height is perpendicular to the base).

 

Pythagorean Theorem:

 

a^2 + b^2 = c^2 (where a and b are the lengths of the legs and c is the length of the hypotenuse)

 

In this case:

 

a (length of leg BD) = 3 cm

 

c (length of hypotenuse AB) = unknown (represents the height of the triangle)

 

b (length of leg AD) = unknown

 

Solving for Height (c):

 

b^2 = c^2 - a^2 (rearranging the equation)

 

b^2 = c^2 - 3^2 (substitute known values)

 

Since AD is half of the base (property of isosceles triangle):

 

AD = 1/2 * BC = 1/2 * 8 cm = 4 cm

 

Substitute the value of AD (b) in the equation:

 

4^2 = c^2 - 3^2

 

Simplify:

 

16 = c^2 - 9

 

Add 9 to both sides:

 

25 = c^2

 

Take the square root of both sides (remember to consider both positive and negative since squaring either results in 25):

 

c = ± 5

 

Positive Height:

 

Since the height represents a distance, we take the positive value:

 

c (height of the triangle) = 5 cm

 

Therefore:

 

Length of segment DC = 5 cm

 

Height of the triangle = 5 cm

Apr 14, 2024

3 Online Users