The SAT mathematics scores (1,664,479 students) in 2012 are approxiimately normally distributed with a mean of 514 and a standard deviation of 117.
$$\\\mu=514 \qquad \sigma=117$$
a. bob achieved a score of 700 on the test. How many standard deviations away from the mean is his score of 700?

$$\\z=\frac{700-514}{117}\\\\
z=\frac{186}{117}\\\\$$
$${\frac{{\mathtt{186}}}{{\mathtt{117}}}} = {\frac{{\mathtt{62}}}{{\mathtt{39}}}} = {\mathtt{1.589\: \!743\: \!589\: \!743\: \!589\: \!7}}$$
His score is 1.59 standard deviations above the mean.
b. What percentage of those who took the test scored higher than Bob?
http://davidmlane.com/hyperstat/z_table.html
0.0559*100 = 5.59% scored higher
c. What is the cutoff point for the top 5% of scores.
http://stattrek.com/online-calculator/normal.aspx
z=1.645
$$\\1.645=\frac{x-514}{117}\\\\
1.645*117=x-514\\\\
1.645*117+514=x\\\\$$
$${\mathtt{1.645}}{\mathtt{\,\times\,}}{\mathtt{117}}{\mathtt{\,\small\textbf+\,}}{\mathtt{514}} = {\mathtt{706.465}}$$
5% of scores are more than 706
d. Find the 99th percentiles for SAT math scores.
I assume this means what is the cut off for the top 1% of scores.
http://stattrek.com/online-calculator/normal.aspx
crit z = 2.326
$$\\2.326=\frac{x-514}{117}\\\\
2.326*117=x-514\\\\
2.326*117+514=x\\\\$$
$${\mathtt{2.326}}{\mathtt{\,\times\,}}{\mathtt{117}}{\mathtt{\,\small\textbf+\,}}{\mathtt{514}} = {\mathtt{786.142}}$$
1% of scores are greater than 786
e. What is the percentage of students who score between 520 and 695?
http://davidmlane.com/hyperstat/z_table.html
0.4186 = 41.86%
Usually you would have to change these scores to zscores first (using the formula above)
But this site I used allows me to insert what ever mean and standard deviation that I want so I didn't bother.
I hope all that helps ![]()
Part (a): Find the sum s =
in terms of
and
$$s = a + (a+1) + ( a+2) + (a+3) + ... +(a+ (n-2)) + (a+(n-1))\\\\
s = \left[a + (a+(n-1))\right] *(\frac{n}{2} ) \\\\
s = \left[2a+(n-1))\right]*(\frac{n}{2} ) \\\\
\boxed{s = n*a+\frac{n(n-1)}{2}}$$
Part (b): Find all pairs of positive integers
such that
and
$$\small{\text{$ 2\le n\le14 \text{ and } a > 0 $}}\\
\small{\text{
$ n= 2\quad a=49.500000 $ }} \\ \small{\text{
$ n= 3\quad a=32.333333 $ }} $\\$ \small{\text{
$ n= 4\quad a=23.500000 $ }} $\\$ \small{\text{
$\textcolor[rgb]{1,0,0}{n= 5\quad a=18.000000} $ }} $\\$ \small{\text{
$ n= 6\quad a=14.166667 $ }} $\\$ \small{\text{
$ n= 7\quad a=11.285714 $ }} $\\$ \small{\text{
$ \textcolor[rgb]{1,0,0}{n= 8\quad a=9.000000 }$ }} $\\$ \small{\text{
$n= 9\quad a=7.111111 $ }} $\\$ \small{\text{
$n=10\quad a=5.500000 $ }} $\\$ \small{\text{
$n=11\quad a=4.090909 $ }} $\\$ \small{\text{
$n=12\quad a=2.833333 $ }} $\\$ \small{\text{
$n=13\quad a=1.692308 $ }} $\\$ \small{\text{
$n=14\quad a=0.642857 $ }} $\\$ \small{\text{
The only 2 solutions for $(a,n)$ are $ (18,5),\ (9,8)$
}} $\\$
\small{\text{
$
\textcolor[rgb]{1,0,0}{18}+19+20+21+22 = 100 \quad $ and $\quad \textcolor[rgb]{1,0,0}{9}+10+11+12+13+14+15+16 = 100
$
}}$$
![]()