Questions   
Sort: 
 #1
avatar+26402 
+50

a)A triangle has vertices at A(1,-3),B(3,3) and C(-3,1)

 

i) Find coordinates of the midpoint (labeled P) of AB and the midpoint (labeled Q) of BC

\(\vec{P}=\frac{ \vec{A}+\vec{B}}{2} =\frac{ \begin{pmatrix}1\\-3\end{pmatrix} +\begin{pmatrix}3\\3\end{pmatrix} } {2} =\frac{ \begin{pmatrix}4\\0\end{pmatrix} }{2} =\begin{pmatrix}2\\0\end{pmatrix}\\\\ \vec{Q}=\frac{ \vec{B}+\vec{C}}{2} =\frac{ \begin{pmatrix}3\\3\end{pmatrix} +\begin{pmatrix}-3\\13\end{pmatrix} } {2} =\frac{ \begin{pmatrix}0\\4\end{pmatrix} }{2} =\begin{pmatrix}0\\2\end{pmatrix}\)

 

ii) show that PQ=½AC

\(\small{ \overline{PQ}=|\vec{P}-\vec{Q}|\\ =\sqrt{ ( \vec{P}-\vec{Q} )\cdot ( \vec{P}-\vec{Q} ) }\\ =\sqrt{ \left[ \begin{pmatrix}2\\0\end{pmatrix} -\begin{pmatrix}0\\2\end{pmatrix} \right] \cdot \left[\begin{pmatrix}2\\0\end{pmatrix} -\begin{pmatrix}0\\2\end{pmatrix} \right] }\\ =\sqrt{ \begin{pmatrix}2\\-2\end{pmatrix} \cdot \begin{pmatrix}2\\-2\end{pmatrix} }\\ =\sqrt{ 4+4 }\\ \overline{PQ}=\sqrt{ 8 }\\ \overline{AC}=|\vec{A}-\vec{C}|\\ =\sqrt{ (\vec{A}-\vec{C})\cdot (\vec{A}-\vec{C}) }\\ =\sqrt{ \left[ \begin{pmatrix}1\\-3\end{pmatrix} -\begin{pmatrix}-3\\1\end{pmatrix} \right] \cdot \left[\begin{pmatrix}1\\-3\end{pmatrix} -\begin{pmatrix}-3\\1\end{pmatrix} \right] }\\ =\sqrt{ \begin{pmatrix}4\\-4\end{pmatrix} \cdot \begin{pmatrix}1\\-4\end{pmatrix} }\\ =\sqrt{ 4\cdot8 }\\ \overline{AC}=2\cdot \sqrt{ 8 }\\ } \)


\(\dfrac{ \overline{PQ} }{\overline{AC} } = \dfrac{ \sqrt{ 8 } }{ 2\cdot \sqrt{ 8 } } = \dfrac{ 1 }{ 2 }\\ \overline{PQ} = \dfrac{ 1 }{ 2 }\cdot \overline{AC}\)

 

 

iii) show that PQ||AC

\((\vec{P}-\vec{Q} )\cdot ( \vec{A}-\vec{C} ) = \overline{PQ}\cdot \overline{AC} \cdot \cos{(\alpha)}\\ \cos{(\alpha)} = \frac{ (\vec{P}-\vec{Q} )\cdot ( \vec{A}-\vec{C} ) } {\overline{PQ}\cdot \overline{AC} }\\ \cos{(\alpha)}= \frac{ \left[ \begin{pmatrix}2\\0\end{pmatrix}-\begin{pmatrix}0\\2\end{pmatrix} \right]\cdot \left[ \begin{pmatrix}1\\-3\end{pmatrix}-\begin{pmatrix}-3\\1\end{pmatrix} \right] } { \sqrt{ 8 }\cdot 2\cdot \sqrt{ 8 } }\\ \cos{(\alpha)}= \frac{ \begin{pmatrix}2\\-2\end{pmatrix}\cdot \begin{pmatrix}4\\-4\end{pmatrix} } {16}\\ \cos{(\alpha)}= \frac{ 16 }{16}\\ \cos{(\alpha)}= 1 \qquad \Rightarrow \qquad \alpha = 0\qquad \Rightarrow \qquad PQ||AC \)

laugh

.
Oct 12, 2015
 #1
avatar+26402 
+10
Oct 12, 2015
 #1
avatar
+3
Oct 12, 2015

2 Online Users