Questions   
Sort: 
 #6
avatar+456 
-1
Mar 31, 2017
 #5
avatar+137 
-1
Mar 31, 2017
 #1
avatar+456 
0
Mar 31, 2017
 #7
avatar+456 
0
Mar 31, 2017
 #3
avatar
0

Solve ( d^2 y(t))/( dt^2) + y(t) = sin(t):
Apply the Laplace transformation ℒ_t[f(t)](s) = integral_0^∞ (f(t))/e^(s t) dt to both sides:
ℒ_t[( d^2 y(t))/( dt^2) + y(t)](s) = ℒ_t[sin(t)](s)

Find the Laplace transformation term by term: :
ℒ_t[( d^2 y(t))/( dt^2)](s) + ℒ_t[y(t)](s) = ℒ_t[sin(t)](s)

Apply ℒ_t[( d^2 y(t))/( dt^2)](s) = s^2 (ℒ_t[y(t)](s)) - s y(0) - y'(0):
ℒ_t[y(t)](s) + -(s y(0)) + s^2 ℒ_t[y(t)](s) - y'(0) = ℒ_t[sin(t)](s)

Apply ℒ_t[sin(t)](s) = 1/(s^2 + 1):
ℒ_t[y(t)](s) + s^2 (ℒ_t[y(t)](s)) - s y(0) - y'(0) = 1/(s^2 + 1)

Simplify:
(s^2 + 1) (ℒ_t[y(t)](s)) - s y(0) - y'(0) = 1/(s^2 + 1)
Solve for ℒ_t[y(t)](s):
ℒ_t[y(t)](s) = (y(0) s^3 + y(0) s + y'(0) + y'(0) s^2 + 1)/(s^2 + 1)^2

Decompose ℒ_t[y(t)](s) via partial fractions:
ℒ_t[y(t)](s) = 1/(s^2 + 1)^2 + (s y(0))/(s^2 + 1) + (y'(0))/(s^2 + 1)
Compute y(t) = ℒ_s^(-1)[1/(s^2 + 1)^2 + (s y(0))/(s^2 + 1) + (y'(0))/(s^2 + 1)](t):

Find the inverse Laplace transformation term by term: :
y(t) = ℒ_s^(-1)[1/(s^2 + 1)^2](t) + ℒ_s^(-1)[(s y(0))/(s^2 + 1)](t) + ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t)

Apply ℒ_s^(-1)[1/(s^2 + 1)^2](t) = 1/2 (sin(t) - t cos(t)):
y(t) = 1/2 (-(t cos(t)) + sin(t)) + ℒ_s^(-1)[(s y(0))/(s^2 + 1)](t) + ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t)

Apply ℒ_s^(-1)[(s y(0))/(s^2 + 1)](t) = y(0) cos(t):
y(t) = 1/2 (-(t cos(t)) + sin(t)) + y(0) cos(t) + ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t)

Apply ℒ_s^(-1)[(y'(0))/(s^2 + 1)](t) = sin(t) y'(0):
y(t) = 1/2 (-(t cos(t)) + sin(t)) + y(0) cos(t) + y'(0) sin(t)

Substitute c_1 = y(0) and c_2 = y'(0):
y(t) = 1/2 (-(t cos(t)) + sin(t)) + c_1 cos(t) + c_2 sin(t)

Simplify the arbitrary constants:
Answer: |y(t) = -1/2 (t cos(t)) + c_1 cos(t) + c_2 sin(t)

Mar 31, 2017
 #6
avatar+206 
0
Mar 31, 2017
 #4
avatar+456 
-1
Mar 31, 2017
 #3
avatar+137 
-1
Mar 31, 2017
 #5
avatar+456 
0
Mar 31, 2017
 #4
avatar+137 
0
Mar 31, 2017
 #6
avatar+456 
0
Mar 31, 2017
 #5
avatar+9 
+1
Mar 31, 2017
 #1
avatar+456 
-1
Mar 31, 2017

3 Online Users