Possible derivation:
d/dx((3 cot(x))/(2 + e^x))
Factor out constants:
= 3 (d/dx((cot(x))/(2 + e^x)))
Use the quotient rule, d/dx(u/v) = (v ( du)/( dx) - u ( dv)/( dx))/v^2, where u = cot(x) and v = e^x + 2:
= 3 ((2 + e^x) d/dx(cot(x)) - cot(x) d/dx(2 + e^x))/(2 + e^x)^2
Differentiate the sum term by term:
= (3 ((2 + e^x) (d/dx(cot(x))) - d/dx(2) + d/dx(e^x) cot(x)))/(2 + e^x)^2
The derivative of 2 is zero:
= (3 ((2 + e^x) (d/dx(cot(x))) - cot(x) (d/dx(e^x) + 0)))/(2 + e^x)^2
Simplify the expression:
= (3 (-(cot(x) (d/dx(e^x))) + (2 + e^x) (d/dx(cot(x)))))/(2 + e^x)^2
The derivative of e^x is e^x:
= (3 ((2 + e^x) (d/dx(cot(x))) - e^x cot(x)))/(2 + e^x)^2
The derivative of cot(x) is -csc^2(x):
Answer: | = (3 (-(e^x cot(x)) + (2 + e^x) -csc(x)^2))/(2 + e^x)^2