The values of the four variables a, b, c, and d are 9, 11, 13, and 15, though not necessarily in that order.
What is the number of possible values of the expression ab+bc+cd+da?
Let a = 9
Let b = 11
Let c = 13
Let d = 15
All permutationsof a,b,c,dABCDAB+BC+CD+DA=(B+D)(A+C)1.abcd9111315(11+15)(9+13)=26∗22=5722.abdc9111513(11+13)(9+15)=24∗24=5763.acbd9131115(13+15)(9+11)=28∗20=5604.acdb9131511(13+11)(9+15)=24∗24=5765.adcb9151311(15+11)(9+13)=26∗22=5726.adbc9151113(15+13)(9+11)=28∗20=5607.bacd1191315(9+15)(11+13)=24∗24=5768.badc1191513(9+13)(11+15)=22∗26=5729.bcad1113915(13+15)(11+9)=28∗20=56010.bcda1113159(13+9)(11+15)=22∗26=57211.bdca1115139(15+9)(11+13)=24∗24=57612.bdac1115913(15+13)(11+9)=28∗20=56013.cbad1311915(11+15)(13+9)=26∗22=57214.cbda1311159(11+9)(13+15)=20∗28=56015.cabd1391115(9+15)(13+11)=24∗24=57616.cadb1391511(9+11)(13+15)=20∗28=56017.cdab1315911(15+11)(13+9)=26∗22=57218.cdba1315119(15+9)(13+11)=24∗24=57619.dbca1511139(11+9)(15+13)=20∗28=56020.dbac1511913(11+13)(15+9)=24∗24=57621.dcba1513119(13+9)(15+11)=22∗26=57222.dcab1513911(13+11)(15+9)=24∗24=57623.dacb1591311(9+11)(15+13)=20∗28=56024.dabc1591113(9+13)(15+11)=22∗26=572
The number of possible values of the expression ab+bc+cd+da=(b+d)(a+c) is 3
The values are 560, 572, and 576
