Questions   
Sort: 
 #3
avatar+26381 
+9

A geometric series

\(b_1+b_2+b_3+\cdots+b_{10} \) has a sum of 180.
Assuming that the common ratio of that series is
\(\dfrac{7}{4}\),
find the sum of the seres
\(b_2+b_4+b_6+b_8+b_{10}\).

 

Geometric series:

\(\begin{array}{|rcll|} \hline b_1 &=& a \\ b_2 &=& ar \\ b_3 &=& ar^2 \\ b_4 &=& ar^3 \\ b_5 &=& ar^4 \\ b_6 &=& ar^5 \\ b_7 &=& ar^6 \\ b_8 &=& ar^7 \\ b_9 &=& ar^8 \\ b_{10} &=& ar^9 \\ \mathbf{r} &=& \mathbf{ \dfrac{7}{4}} \\\\ s_{10} & = & b_1+b_2+b_3+b_4+b_5+b_6+b_7+b_8+b_9+b_{10} \\ \mathbf{s_{10}} &\mathbf{=}& \mathbf{180} \\ \hline \end{array}\)

 

The sum of a geometric series \(s_{10}\):

\(\begin{array}{|rcll|} \hline s_{10} &=& a\left(\dfrac{1-r^{10}}{1-r}\right) \\ &\text{or} \\ \mathbf{a} & \mathbf{=}& \mathbf{ \dfrac{s_{10}(1-r) }{1-r^{10}} } \\ \hline \end{array} \)

 

\(\text{Let $\mathbf{x}=b_2+b_4+b_6+b_8+b_{10}$}\)

 

\(\begin{array}{|rcll|} \hline s_{10} &=& b_1+b_2+b_3+b_4+b_5+b_6+b_7+b_8+b_9+b_{10} \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+b_3+b_5+b_7+b_9 \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\left(\dfrac{b_3}{r}+\dfrac{b_5}{r}+\dfrac{b_7}{r}+\dfrac{b_9}{r}\right) \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\cdot (b_2+b_4+b_6+b_8) \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\cdot (b_2+b_4+b_6+b_8)+rb_{10}-rb_{10} \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\cdot (b_2+b_4+b_6+b_8+b_{10})-rb_{10} \\\\ s_{10} &=& b_1+x+r\cdot x-rb_{10} \\\\ s_{10} &=& x(1+r) + b_1-rb_{10} \quad | \quad b_1 = a,\ b_{10}= ar^9 \\\\ s_{10} &=& x(1+r) + a-rar^9 \\\\ s_{10} &=& x(1+r) + a-ar^{10} \\\\ s_{10}&=& x(1+r) + a(1-r^{10}) \quad | \quad \mathbf{a = \dfrac{s_{10}(1-r) }{(1-r^{10})} } \\\\ s_{10}&=& x(1+r) + \dfrac{s_{10}(1-r) }{(1-r^{10})}(1-r^{10}) \\\\ \mathbf{s_{10}} &\mathbf{=}& \mathbf{x(1+r) + s_{10}(1-r) } \\ \hline \end{array} \)

 

\(\mathbf{x=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{s_{10}} &\mathbf{=}& \mathbf{x(1+r) + s_{10}(1-r) } \\\\ x(1+r) &=& s_{10} - s_{10}(1-r) \\ x(1+r) &=& s_{10}\Big(1 - (1-r) \Big) \\ x(1+r) &=& s_{10} (1 - 1+r ) \\ x(1+r) &=& s_{10}r \\ \mathbf{x} &\mathbf{=}& \mathbf{s_{10}\left(\dfrac{r}{1+r}\right)} \quad | \quad s_{10}=180,\ r=\dfrac{7}{4} \\ x & = & 180\cdot \left(\dfrac{\dfrac{7}{4}}{1+\dfrac{7}{4}}\right) \\\\ x & = & 180\cdot \left(\dfrac{\dfrac{7}{4}}{ \dfrac{11}{4}}\right) \\\\ x & = & 180\cdot \left( \dfrac{7}{11} \right) \\\\ \mathbf{x} &\mathbf{=}& \mathbf{\dfrac{1260}{11}} \\ \hline \end{array}\)

 

The sum of the series \(\mathbf{b_2+b_4+b_6+b_8+b_{10}}\) is \(\mathbf{\dfrac{1260}{11}}\)

 

laugh

Feb 6, 2019
 #2
avatar+26381 
+8

The sum of a geometric series whose first three terms are 8000, -12000, and 18000 is 57875.

What is the last term of the series?

 

Geometric series:

\(\begin{array}{lrcll} \text{first term} & a_1 &=& a \\ \text{second term} & a_2 &=& ar \\ \text{third term} & a_3 &=& ar^2 \\ \ldots \\ \text{last term} & a_n &=& ar^{n-1} \\\\ \text{so}& a_1 &=& 8000 \\ & a_2 &=& -12000 \\ & a_3 &=& 18000 \\\\ \text{a=?} & a &=& a_1 \\ & \mathbf{a} & \mathbf{=}& \mathbf{8000} \\\\ \text{r=?} & r &=& \dfrac{a_2}{a_1} = \dfrac{a_3}{a_2} \\ & r &=& \dfrac{-12000}{8000} \\ & \mathbf{r} & \mathbf{=}& \mathbf{-\dfrac{3}{2}} \\ \end{array} \)

 

The sum of a geometric series \(s_n\):

\(\begin{array}{|rcll|} \hline s_n &=& a\left(\dfrac{1-r^{n}}{1-r}\right) \\\\ s_n &=& \dfrac{a-ar^{n}}{1-r} \\\\ s_n &=& \dfrac{a-ar^{n-1}r}{1-r} \quad | \quad a_n = ar^{n-1} \\\\ \mathbf{s_n} & \mathbf{=}& \mathbf{\dfrac{a-a_nr}{1-r} } \\ \hline \end{array}\)

 

The last term \(a_n\):

\(\begin{array}{|rcll|} \hline s_n &=& \dfrac{a-a_nr}{1-r} \\ s_n(1-r) &=& a-a_nr \\ a_nr &=& a-s_n(1-r) \\ a_n &=& \dfrac{ a-s_n(1-r) } {r} \quad & | \quad a=8000,\ s_n =57875, \ r =-\dfrac{3}{2} \\ a_n &=& \dfrac{ 8000-57875\left(1-\left(-\dfrac{3}{2}\right)\right) } {-\dfrac{3}{2}} \\ a_n &=& -\dfrac{2}{3}\cdot \left( 8000-57875\cdot \dfrac{5}{2} \right) \\ a_n &=& \dfrac{1}{3}\cdot \left( 5\cdot 57875-16000 \right) \\ a_n &=& \dfrac{273375}{3} \\ \mathbf{a_n} & \mathbf{=}& \mathbf{91125} \\ \hline \end{array}\)

 

The last term of the series is 91125

 

laugh

Feb 6, 2019
 #4
avatar+26381 
+6
Feb 6, 2019
 #1
avatar+116 
+1

2. CPhill's Answer:

 

Let one of the integers   = a

Let the other integer  = b

And 1 less than a multiple of 5 can be written as  5n  - 1   where n is an integer ≥ 1

 

So....we have this equation

  S          +   P   =  5n - 1

(a + b )   +  (ab)  = 5n - 1      (1)

Rearranging (1), we have

a + ab +  b  = 5n -1

a + ab + b + 1  = 5n

a (b + 1)  + 1 ( b + 1)   = 5n

(a + 1)(b + 1)  = 5n

 

Note that if  "a" ends in a "4"  or a "9' then  (a + 1)  is a multiple of 5, and no matter the integer value of b, the left side is always a multiple of 5. And the right side is definitely a multiple of 5

 

So...the  "a's"  that  end in either 4 or  9 from 1-50 inclusive are :

 

4, 9 ,14, 19, 24, 29,34, 39, 44, 49

 

Notice that we can pair 4 with any of the other 49 integers and (1) will be true

Likewise, we can can pair 9 with any of 48 integers  [we've already paired it with 4 ], and (1)  will be true

And 19 can be paired with any of 47 other integers  [ we've already paired it with 4 and 9 ] and (1)  will be true

Continuing this reasoning with each successive number, we finally arrive at the fact that 49 can  be paired with any of 40 other integers and (1) will be true

 

So....the number of pairs  is just   49 + 48  + 47 +  .....+ 41  + 40

 

And totalling these, we have that the number of pairs is just :

 

( 49 + 40)  *  10  / 2   =

 

89 * 5   =

 

445  pairs a,b   that make (1)  true

 

And the number of possible pairs of a and b is  C(50,2)   = 1225

 

So, the probability that P + S  is one less than a multiple of 5, is just

 

445  / 1225  =

 

89  / 245    ≈  36.3 %

Feb 6, 2019

0 Online Users