Questions   
Sort: 
 #8
avatar+26367 
+3

In the sequence:
each term (starting from the third term) is the product of the two terms before it.

For example, the seventh term is 256, which is the product of the fifth term (8) and the sixth term (32).


This sequence can be continued forever, though the numbers very quickly grow enormous! (For example, the 14th term is close to some estimates of the number of particles in the observable universe.)


What is the last digit of the 35th term of the sequence?


\(1,2,2,4,8,32,256,\ldots,\)

 

\(\begin{array}{|rcl|l|} \hline a_n &&& \text{Fibonacci numbers} \\ \hline a_1 &=& 2^{0} & F_{0} = 0 \\ a_2 &=& 2^{1} & F_{1} = 1 \\ a_3 &=& 2^{1} & F_{2} = 1 \\ a_4 &=& 2^{2} & F_{3} = 2 \\ a_5 &=& 2^{3} & F_{4} = 3 \\ a_6 &=& 2^{5} & F_{5} = 5 \\ a_7 &=& 2^{8} & F_{6} = 8 \\ a_8 &=& 2^{13} & F_{7} = 13 \\ a_9 &=& 2^{21} & F_{8} = 21 \\ \ldots \\ a_n &=& 2^{F_{n-1}} \\ \hline a_{35} &=& 2^{F_{34}} & F_{34} = 5702887 \\ \mathbf{a_{35}} &=& \mathbf{2^{5702887}} \\ \hline \end{array} \)

 

The last digit of the 35th term of the sequence is \( \mathbf{2^{5702887}} \pmod{10}\)

\(\begin{array}{|rcll|} \hline && \mathbf{2^{5702887}} \pmod{10} \quad &| \quad \mathbf{2^4}=16 \equiv \mathbf{6} \pmod{10} \\ &\equiv & 2^{4*1425721+3} \pmod{10} \\ &\equiv & \left( 2^{4} \right)^{1425721}*2^3 \pmod{10} \\ &\equiv & 6^{1425721}*2^3 \pmod{10} \quad & | \quad 6^n \equiv 6 \pmod{10} \\ &\equiv & 6 *2^3 \pmod{10} \\ &\equiv & 6 *8 \pmod{10} \\ &\equiv & 48 \pmod{10} \\ &\equiv & \mathbf{8} \pmod{10} \\ \hline \end{array} \)

 

The last digit of the 35th term of the sequence is 8

 

laugh

May 21, 2019
 #9
avatar+33616 
+1
May 21, 2019
 #3
avatar+118609 
0
May 21, 2019

3 Online Users

avatar