Questions   
Sort: 
 #2
avatar+26388 
+1

A permutation of the numbers (1,2,3,...,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3) is a permutation of (1,2,3,4,5). Let \pi = (x_1,x_2,x_3,---,x_n) be a permutation of the numbers (1,2,3,....,n). A fixed point of \pi is an integer k(1 ≤ k ≤ n) such that x_k=k. For example, 4 is a fixed point of the permutation $(2,5,1,4,3). How many permutations of (1,2,3,4,5,6,7) have at least one even fixed point?

 

I assume 1824 permutations of (1,2,3,4,5,6,7) have at least one even fixed point.

 

 1.) 1234567   3 (even fixed points)
 2.) 1234576   2 (even fixed points)
 3.) 1234657   2 (even fixed points)
 4.) 1234675   2 (even fixed points)
 5.) 1234765   3 (even fixed points)
 6.) 1234756   2 (even fixed points)
 7.) 1235467   2 (even fixed points)
 8.) 1235476   1 (even fixed points)
 9.) 1235647   1 (even fixed points)
 10.) 1235674   1 (even fixed points)
 11.) 1235764   2 (even fixed points)
 12.) 1235746   1 (even fixed points)
\(\cdots\)
 998.) 4731265   1 (even fixed points)
 999.) 4735162   1 (even fixed points)
 1000.) 4735261   1 (even fixed points)
 1001.) 4732561   1 (even fixed points)
 1002.) 4732165   1 (even fixed points)
 1003.) 4713562   1 (even fixed points)
 1004.) 4713265   1 (even fixed points)
 1005.) 4715362   1 (even fixed points)
 1006.) 4715263   1 (even fixed points)
\(\cdots\)
 1410.) 6217453   1 (even fixed points)
 1411.) 6274513   2 (even fixed points)
 1412.) 6274531   2 (even fixed points)
 1413.) 6274153   2 (even fixed points)
 1414.) 6274135   2 (even fixed points)
 1415.) 6274315   2 (even fixed points)
 1416.) 6274351   2 (even fixed points)
 1417.) 6275413   1 (even fixed points)
 1418.) 6275431   1 (even fixed points)
 1419.) 6275143   1 (even fixed points)
\(\cdots\)
 1626.) 7261453   1 (even fixed points)
 1627.) 7214563   3 (even fixed points)
 1628.) 7214536   2 (even fixed points)
 1629.) 7214653   2 (even fixed points)
 1630.) 7214635   2 (even fixed points)
 1631.) 7214365   3 (even fixed points)
 1632.) 7214356   2 (even fixed points)
\(\cdots\)
 1812.) 7164325   1 (even fixed points)
 1813.) 7164235   1 (even fixed points)
 1814.) 7164253   1 (even fixed points)
 1815.) 7124563   2 (even fixed points)
 1816.) 7124536   1 (even fixed points)
 1817.) 7124653   1 (even fixed points)
 1818.) 7124635   1 (even fixed points)
 1819.) 7124365   2 (even fixed points)
 1820.) 7124356   1 (even fixed points)
 1821.) 7125463   1 (even fixed points)
 1822.) 7125364   1 (even fixed points)
 1823.) 7123564   1 (even fixed points)
 1824.) 7123465   1 (even fixed points)

 

laugh

Nov 4, 2019
 #3
avatar+26388 
+2

If there are vectors \(\mathbf{v} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}\)\(\mathbf{w} = \begin{pmatrix} 1\\4 \\5 \end{pmatrix}\),  and \( \mathbf{x} = \begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix}\).
Find coefficients a, b, and c, not all 0, such that

\(a\begin{pmatrix} 1\\2\\1 \end{pmatrix}+b \begin{pmatrix} 1\\4 \\5 \end{pmatrix} + c\begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\)
and answer with \(\dfrac{a-b}{c}\).

 

\(\begin{array}{|lrcll|} \hline &\begin{pmatrix} 1&1&-1\\2&4&6\\1&5&15 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} &=& \begin{pmatrix} 0\\0\\0 \end{pmatrix} \\\\ (2): &2a +4b+6c &=& 0 \quad | \quad : 2 \\ &a +2b+3c &=& 0 \\\\ &\begin{pmatrix} 1&1&-1\\1&2&3\\1&5&15 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} &=& \begin{pmatrix} 0\\0\\0 \end{pmatrix} \\\\ (3) = (3) - (1) : &\begin{pmatrix} 1&1&-1\\1&2&3\\0&4&16 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} &=& \begin{pmatrix} 0\\0\\0 \end{pmatrix} \\\\ (3) &0\cdot a +4b+16c &=& 0 \quad | \quad : 4 \\ & b+4c &=& 0 \\\\ &\begin{pmatrix} 1&1&-1\\1&2&3\\0&1&4 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} &=& \begin{pmatrix} 0\\0\\0 \end{pmatrix} \\\\ (2) = (2) - (1) : &\begin{pmatrix} 1&1&-1\\0&1&4\\0&1&4 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} &=& \begin{pmatrix} 0\\0\\0 \end{pmatrix} \\\\ (3) = (3) - (2) : &\begin{pmatrix} 1&1&-1\\0&1&4\\0&0&0 \end{pmatrix} \cdot \begin{pmatrix} a\\b\\c \end{pmatrix} &=& \begin{pmatrix} 0\\0\\0 \end{pmatrix} \\ \hline \end{array}\)

 

We set \(c=k\):

\(\begin{array}{|lrcll|} \hline (2): & 0\cdot a+1\cdot b+4 c &=& 0 \quad | \quad c=k \\ & b+4k &=& 0 \\ & \mathbf{ b } &=& \mathbf{ -4k } \\\\ (1): & 1\cdot a+1\cdot b- 1 \cdot c &=& 0 \quad | \quad c=k,\ b=-4k \\ & a-4k-k &=& 0 \\ & a-5k &=& 0 \\ & \mathbf{ a } &=& \mathbf{ 5k } \\ \hline \end{array} \)

 

proof:

\(\begin{array}{|rcll|} \hline a\begin{pmatrix} 1\\2\\1 \end{pmatrix}+b \begin{pmatrix} 1\\4 \\5 \end{pmatrix} + c\begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix} &=& \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad | \quad a=5k,\ b=-4k,\ c=k \\\\ \hline 5k\begin{pmatrix} 1\\2\\1 \end{pmatrix}-4k \begin{pmatrix} 1\\4 \\5 \end{pmatrix} + k\begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix} &=& \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\\\ 5k-4k-k &=& 0 \checkmark \\ 10k-16k+6k &=& 0 \checkmark \\ 5k - 20k+15k &=& 0 \checkmark \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \dfrac{a+b}{c} } \\\\ &=& \dfrac{5k-(-4k)}{k} \\\\ &=& \dfrac{5k+4k}{k} \\\\ &=& \dfrac{9k}{k} \\\\ &=& \mathbf{9} \\ \hline \end{array} \)

 

laugh

Nov 4, 2019

3 Online Users

avatar