Questions   
Sort: 
 #1
avatar+26382 
+3

Let \(f(x)\) be a monic polynomial of degree \(4\).  If \(f(1) = 1\), \(f(2) = 2\), \(f(3) = 3\), and \(f(4) = 4\), then what is \(f(6)\)?

 

\(\begin{array}{|lrcll|} \hline & \mathbf{f(x)} &=& \mathbf{x^4+ax^3+bx^2+cx+d} \\\\ f(1)=1: & 1&=& 1^4+a*1^3+b*1^2+c*1+d \\ & \mathbf{a+b+c+d} &=& \mathbf{0} \\\\ f(2)=2: & 2&=& 2^4+a*2^3+b*2^2+c*2+d \\ & \mathbf{8a+4b+2c+d} &=& \mathbf{-14} \\\\ f(3)=3: & 3&=& 3^4+a*3^3+b*3^2+c*3+d \\ & \mathbf{27a+9b+3c+d} &=& \mathbf{-78} \\\\ f(4)=4: & 4&=& 4^4+a*4^3+b*4^2+c*4+d \\ & \mathbf{64a+16b+4c+d} &=& \mathbf{-252} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{a+b+c+d} &=& \mathbf{0} \\ (2) & \mathbf{8a+4b+2c+d} &=& \mathbf{-14} \\ (3) & \mathbf{27a+9b+3c+d} &=& \mathbf{-78} \\ (4) & \mathbf{64a+16b+4c+d} &=& \mathbf{-252} \\ \hline (2)-(1):& 7a+3b+c &=& -14 \quad &| \quad [1] \\ (3)-(2):& 19a+5b+c &=& -64 \quad &| \quad [2] \\ (4)-(3):& 37a+7b+c &=& -174 \quad &| \quad [3] \\ \hline [2]-[1]:& 12a+2b &=& -50 \quad &| \quad \{1\} \\ [3]-[2]:& 18a+2b &=& -110 \quad &| \quad \{2\} \\ \hline \{2\}-\{1\}:& 6a &=& -60 \\ & \mathbf{a} &=& \mathbf{-10} \\\\ \{1\}& 2b &=& -50 -12a \\ & 2b &=& -50 -12*\left(-10\right) \\ & \mathbf{b} &=& \mathbf{35} \\\\ [1] & c&=& -14-7a-3b \\ & c&=& -14-7*\left(-10\right)-3*35 \\ & \mathbf{c} &=& \mathbf{-49} \\\\ (1) & d &=& -a-b-c \\ & d &=& -\left(-10\right)-35-\left(-49\right) \\ & \mathbf{d} &=& \mathbf{24} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x)} &=& \mathbf{x^4+ax^3+bx^2+cx+d} \quad | \quad a=-10,\ b=35,\ c=-49,\ d=24 \\\\ \mathbf{f(x)} &=& \mathbf{x^4-10x^3+35x^2-49x+24} \\\\ f(6) &=& 6^4-10*6^3+35*6^2-49*6+24 \\\\ \mathbf{f(6)} &=& \mathbf{126} \\ \hline \end{array}\)

 

laugh

Nov 21, 2019
 #1
avatar+26382 
+3

Find the polynomial \(p(x)\), with real coefficients,
such that \(p(2) = 5\) and \(p(x) p(y) = p(x) + p(y) + p(xy) - 2\) for all real numbers \(x\) and \(y\).

 

\(\begin{array}{|lrcll|} \hline & \mathbf{ p(x) p(y)} &=& \mathbf{ p(x) + p(y) + p(xy) - 2 } \\\\ x=1,\ y=2: & p(1) p(2) &=& p(1) + p(2) + p(1*2) - 2 \quad | \quad \mathbf{p(2) = 5} \\ & p(1) *5 &=& p(1) + 5 + 5 - 2 \\ & 5p(1) &=& p(1) + 8 \\ & 4p(1) &=& 8 \\ & p(1) &=& \dfrac{8}{4} \\ & \mathbf{p(1)} &=& \mathbf{2} \\\\ x=0,\ y=2: & p(0) p(2) &=& p(0) + p(2) + p(0*2) - 2 \quad | \quad \mathbf{p(2) = 5} \\ & p(0) *5 &=& p(0) + 5 + p(0) - 2 \\ & 3p(0) &=& 3 \quad | \quad :3 \\ & \mathbf{p(0)} &=& \mathbf{1} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & p(0) &=& 1 \\ & p(1) &=& 2 \\ & p(2) &=& 5 \\ \hline & p(x) &=& ax^2+bx+c \\ p(0)=1: & 1 &=& a*0^2+b*0 +c \\ & \mathbf{c} &=& \mathbf{1} \\\\ p(1)=2: & 2 &=& a*1^2+b*1 +c \quad | \quad c=1 \\ & 2 &=& a+b+1 \\ & \mathbf{a+b} &=& \mathbf{1} \\\\ & \mathbf{ b} &=& \mathbf{1-a} \\\\ p(2)=5: & 5 &=& a*2^2+b*2 +c \\ & 5 &=& 4a+2b +c \quad | \quad c=1 \\ & 5 &=& 4a+2b + 1 \\ & 4 &=& 4a+2b \quad | \quad :2 \\ & 2a+b &=& 2 \quad | \quad b=1-a \\ & 2a+1-a &=& 2 \\ & \mathbf{ a} &=& \mathbf{1 } \\\\ & \mathbf{ b} &=& \mathbf{1-a} \quad | \quad a = 1 \\ & b &=& 1-1 \\ & \mathbf{b} &=& \mathbf{0} \\ \hline & p(x) &=& ax^2+bx+c \quad | \quad a=1,\ b=0,\ c=1 \\ & \mathbf{p(x)} &=& \mathbf{x^2+1} \\ \hline \end{array}\)

 

check:

\(\begin{array}{|rcll|} \hline \mathbf{ p(x) p(y)} &=& \mathbf{ p(x) + p(y) + p(xy) - 2 } \\\\ (x^2+1)(y^2+1) &=& (x^2+1) + (y^2+1) + \left((xy)^2+1\right) - 2 \\ x^2y^2+x^2+y^2+1 &=& x^2+1 + y^2+1 + x^2y^2+1 - 2 \\ x^2y^2+x^2+y^2+1 &=& x^2y^2+ x^2+y^2 + 1 +1 +1 - 2 \\ x^2y^2+x^2+y^2+1 &=& x^2y^2+ x^2+y^2 + 3 - 2 \\ x^2y^2+x^2+y^2+1 &=& x^2y^2+ x^2+y^2 + 1\ \checkmark \\ \hline \end{array}\)

 

laugh

Nov 21, 2019

1 Online Users

avatar