Questions   
Sort: 
 #3
avatar+118629 
0
Nov 28, 2019
 #1
avatar+26382 
+2

A line \(y=mx+b\)  intersects the parabola \(y=x^2\) at points \(A\) and \(B\).
The line \(AB\) intersects the y-axis at the point  \(P\).

If \(AP-BP=1\)  then find \(m^2\).

 

\(\text{Let $A=(x_A,y_A)=(x_A,x_{A}^2) $} \\ \text{Let $B=(x_B,y_B)=(x_B,x_{B}^2) $} \\ \text{Let $P=(x_P,y_P)=(0,y_P) $} \)

 

\(\begin{array}{|l&rcll|} \hline BP: & m &=& \dfrac{y_P-y_B}{x_P-x_B} \\ & &=& \dfrac{y_P-x_{B}^2}{0-x_B} \\ &\mathbf{ m}&=& \mathbf{\dfrac{x_{B}^2-y_P}{x_B}} \\\\ AP: & m &=& \dfrac{y_A-y_P}{x_A-x_P} \\ & &=& \dfrac{x_{A}^2-y_P}{x_A-0} \\ &\mathbf{m} &=& \mathbf{\dfrac{x_{A}^2-y_P}{x_A}} \\ \hline \mathbf{ m} & = \mathbf{\dfrac{x_{B}^2-y_P}{x_B}}&=& \mathbf{\dfrac{x_{A}^2-y_P}{x_A}} \\ & x_A(x_{B}^2-y_P) &=& x_B(x_{A}^2-y_P)\\ & x_A x_{B}^2-x_Ay_P &=& x_B x_{A}^2-x_By_P \\ & y_P(x_B-x_A) &=& x_B x_{A}^2-x_A x_{B}^2 \\ & y_P(x_B-x_A) &=& -x_Ax_B(x_B-x_A) \\ (1) & \mathbf{y_P} &=& \mathbf{-x_Ax_B} \\ \hline &\mathbf{ m}&=& \mathbf{\dfrac{x_{B}^2-y_P}{x_B}} \quad | \quad \mathbf{y_P=-x_Ax_B} \\ & m &=& \dfrac{x_{B}^2-(-x_Ax_B)}{x_B} \\ & m &=& \dfrac{x_{B}^2+x_Ax_B}{x_B} \\ & m &=& \dfrac{x_{B}^2}{x_B}+\dfrac{x_Ax_B}{x_B} \\ (2) & \mathbf{m} &=& \mathbf{x_A+x_B} \\ \hline \end{array}\)

 

\(\begin{array}{|rclrcl|} \hline \mathbf{AP-BP} &=& {1} \qquad \text{or} \qquad BP = AP-1 \\\\ \mathbf{AB} &=& \mathbf{AP+BP} \\ AB &=& AP+AP-1 \\ \mathbf{AB} &=& \mathbf{2AP-1} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline AB^2 &=& (x_A -x_B )^2+(y_A -y_B )^2 \\ &=& (x_A -x_B )^2+\left(x_{A}^2 -x_{B}^2 \right)^2 \\ &=& (x_A -x_B )^2+\Big( (x_{A} -x_{B}) (x_{A} +x_{B}) \Big)^2 \\ &=& (x_A -x_B )^2+ (x_{A} -x_{B})^2 (x_{A} +x_{B})^2 \\ &=& (x_A -x_B )^2 \Big(1 +( \underbrace{x_{A} +x_{B}}_{=m})^2\Big) \\ &=& (x_A -x_B )^2 (1 +m^2 ) \\ \mathbf{AB} &=& \mathbf{(x_A -x_B )\sqrt{1 +m^2} } \\\\ AP^2 &=& (x_A -x_P )^2+(y_A -y_P )^2 \\ &=& (x_A -0 )^2+(x_{A}^2 -y_P )^2 \\ &=& x_{A}^2+(x_{A}^2 -y_P )^2 \quad | \quad y_P=-x_Ax_B \\ &=& x_{A}^2+(x_{A}^2 + x_Ax_B )^2 \\ &=& x_{A}^2+\Big(x_A(\underbrace{x_A+x_B}_{=m}) \Big)^2 \\ &=& x_{A}^2+(x_A\times m)^2 \\ &=& x_{A}^2+x_{A}^2m^2 \\ &=& x_{A}^2(1+m^2) \\ \mathbf{AP} &=& \mathbf{x_A\sqrt{1 +m^2} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{AB} &=& \mathbf{2AP-1} \\\\ \mathbf{(x_A -x_B )\sqrt{1 +m^2} } &=& 2\times \mathbf{x_A\sqrt{1 +m^2} } -1 \\ \sqrt{1 +m^2}(x_A-x_B-2x_A) &=& -1 \\ \sqrt{1 +m^2}(2x_A-x_A+x_B) &=& 1 \\ \sqrt{1 +m^2}(\underbrace{x_A+x_B}_{=m}) &=& 1 \\ \sqrt{1 +m^2}\times m &=& 1 \quad \text{square both sides} \\ (1 +m^2)\times m^2 &=& 1 \\ (m^2)^2 + m^2 - 1 &=& 0 \\ m^2 &=& \dfrac{-1\pm \sqrt{1-4*(-1)} }{2} \\\\ m^2 &=& \dfrac{-1 {\color{red}+} \sqrt{1-4*(-1)} }{2} \quad | \quad m^2 > 0 ! \\ \mathbf{m^2} &=& \mathbf{\dfrac{-1 +\sqrt{5} }{2}} \\ \hline \end{array}\)

 

laugh

Nov 28, 2019
 #6
avatar+118629 
+1
Nov 28, 2019
Nov 27, 2019
 #3
avatar+1253 
-1
Nov 27, 2019
 #2
avatar+129657 
+1

A. Determine the position and velocity functions for the book.

 

B. Determine the average velocity of the book on the interval [0, 1].

 

C. Find the instantaneous velocities when t = 0 and t = 1.

 

D. At what time is the instantaneous velocity of the coin equal to the average velocity of the book found in part B?

 

E. What is the name of the theorem that says there must be at least one solution to part D?

 

F. Find the velocity of the book just before it hits the ground.

 

 

A.  

The position function is   :  s(t)  =     -16t^2 -10t + 378 

The velocity function isthe derivative of this = s'(t)  =  -32t - 10

 

B.

The  average velocity on [ 0, 1]  =

  

[ (-32(1) - 10 )  - (-32(0) - 10 ]            -32

_______________________ =      ______  =    -32 ft/s

           1  - 0                                         1

 

 

C. When t  = 0,  the instantaneous velocity  is  -32(0) - 10  =  -10ft/s    [which we would expect ]

     When t = 1, the instantaneous velocity is  -32(1) - 10  =  - 42ft/s

 

D. I am taking "coin" to mean "book"

 

We want to know when 

 

-32  =  - 32t - 10      add 10 to both sides

 

-22 = -32 t      divide both sides by -32

 

-22/-32  = t  =  11/16 sec = .6875  sec

 

 

E.  Average Value Theorem  [ or, Mean Value Theorem ]

 

F.  We need to solve this to find the  time it takes to hit the ground

 

-16t^2 - 10t + 378  = 0

 

16t^2 + 10t - 378  =  0        divide through by 2

 

8t^2 + 5t - 189  = 0

 

Using the quad formula

 

t =   -5 ±√ [ 5^2 - 4*8*189 ]            -5 ±√ [ 25 + 6048]

      ___________________  =   _________________  ≈  4.558 sec  or  - 5.183 sec

              2 * 8                                         16

 

Take the positive time  and the instantaneous velocity  when the book hits the ground is :

 

-32(4.558) - 10   ≈  -155.86 ft/s

 

 

 

cool cool cool

Nov 27, 2019

3 Online Users

avatar