Questions   
Sort: 
 #3
avatar+26364 
+1

Solve for real numbers x, y, z:
x + yz = 6,
y + xz = 6,
z + xy = 6.

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{x + yz} &=& \mathbf{6} \\ & yz &=& 6-x \\ & \mathbf{z} &=& \mathbf{ \dfrac{6-x}{y} } \quad | \quad \boxed{ y\neq 0 !} \\ \hline (2) & \mathbf{y + xz} &=& \mathbf{6} \\ & xz &=& 6-y \\ & x\left(\dfrac{6-x}{y}\right) &=& 6-y \\ & x(6-x) &=& y(6-y) \\ & 6x-x^2 &=& 6y-y^2 \\ & \mathbf{x^2-6x+6y-y^2} &=& \mathbf{0} \\ \hline (3) & \mathbf{z + xy} &=& \mathbf{6} \qquad \text{ or } \qquad \mathbf{z = 6-xy} \\ & xy &=& 6-z \\ & xy &=& 6-\left(\dfrac{6-x}{y}\right) \\ & xy &=& \dfrac{6y-(6-x)}{y} \\ & \mathbf{xy^2} &=& \mathbf{6y-6+x} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2-6x+6y-y^2} &=& \mathbf{0} \\ x &=& \dfrac{ 6\pm \sqrt{36-4(6y-y^2)} } {2} \\ x &=& \dfrac{ 6\pm \sqrt{4y^2-24y+36} } {2} \\ x &=& \dfrac{ 6\pm \sqrt{4(y^2-6y+9)} } {2} \\ x &=& \dfrac{ 6\pm \sqrt{4(y-3)^2} } {2} \\ x &=& \dfrac{ 6\pm 2(y-3) } {2} \\ x &=& 3 \pm (y-3) \\ \\ \mathbf{ x = y } \quad &\text{or}& \quad \mathbf{x=6-y} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & \mathbf{xy^2} &=& \mathbf{6y-6+x} \\ \hline x_1 = y: & y^3 &=& 6y-6+y \\ & y^3-7y+6 &=& 0 \\ & y_1 &=& -3 \qquad \Rightarrow x_1 = y_1 = -3 \\ & y_2 &=& 1 \qquad \Rightarrow x_2 = y_2 = 1 \\ & y_3 &=& 2 \qquad \Rightarrow x_3 = y_3 = 2 \\ \hline x_2 = 6-y: & (6-y)y^2 &=& 6y-6+(6-y) \\ & 6y^2-y^3 &=& 5y \\ & y^3- 6y^2 +5y &=& 0 \\ & \underbrace{y}_{y\neq 0} \underbrace{(y^2- 6y +5)}_{=0} &=& 0 \\\\ & y^2- 6y +5 &=& 0 \\ & (y-5)(y-1) &=& 0 \\ & y_4 &=& 5 \qquad \Rightarrow x_4 = 6-y_4 = 1 \\ & y_5 &=& 1 \qquad \Rightarrow x_5 = 6-y_5 = 5 \\ \hline \end{array}\)

 

\(\begin{array}{|c|r|r|r|} \hline & x & y & z= 6-xy \\ \hline 1. & -3 & -3 & -3 \\ 2. & 1 & 1 & 5 \\ 3. & 2 & 2 & 2 \\ 4. & 1 & 5 & 1 \\ 5. & 5 & 1 & 1 \\ \hline \end{array}\)

 

laugh

Dec 9, 2019
 #2
avatar+118587 
+1

 

Find the sum of all the two digit numbers which can be expressed as an integral multiple of the product of their digits.

 

I did this by looking at the numbers. It is not as arduous as it looks

 

10a+b=kab       where  1<= a <= 9       0<=b<=9     and k is a positive integer

 

If a=1 then

10+b=1b * k

b=0 no

b=1   k=11  yes   11

b=2    k=6  yes    12

b=3    no

b=4    14 is not a multiple of 4 so no

b=5     15 is a multple of 5  k= 3         15

b=6    16 is not a multiple of 6 so no

b=7     17 is not a multiple of 7 so no

b=8     18 is not a multiple of 8 so no

b=9     19 is not a multiple of 9 so no  

 

Ok now I can see a bit of a pattern emerging.  The original number must be a multiple of the last digit.

so when I look at a=2  I only need think about even 2 digit numbers

10a+b=kab 

If a=2 then

20+b= 2b * k

b=2  no

b=4    24 is divisable by 2*4=8  good    24

b=6  no, b=8 no

 

10a+b=kab    a=3

30+b=3b * k

If a=3 I only need consider numbers that are multiples of 3 which are  33,36,39

divide by 3  and I get   11,12,13

these must also be multiples of by b  

11/3  no,   12/6 yes  13/9 no

SO only   36 works here

 

10a+b=kab    a=4

40+b=4b * k

If a=4 I only need consider numbers that are multiples of 4 which are  44 and 48

divide by 4  and I get   11 and 12

these must also be multiples of by b  

11/4 no   12/8 no

SO none of these work

 

10a+b=kab    a=5

50+b=5b * k

only 55 is a multiple of 5

55/5=11   11 is not a multiple of 5 so no good

 

10a+b=kab    a=6

66 does not work

nor will 77 or 88 or 99

 

So the only ones that work are     11,  12,  15,  24  and 36.

 

Guest has already added them for you.

Dec 9, 2019
 #1
avatar+26364 
+2

Saturn has a radius of about 9.0 earth radii, and a mass 95 times the Earth’s mass.

Estimate the gravitational field on the surface of Saturn compared to that on the Earth.

 

Newton's law of universal gravitation : \(F = G \dfrac{Mm}{r^2}\)
Newton's laws of motion : \(F=ma\)

 

\(\begin{array}{|rcll|} \hline F=ma&=& G \dfrac{Mm}{r^2} \\\\ \mathbf{a} &=& \mathbf{\dfrac{GM}{r^2}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline a_{\text{Earth}} &=& \mathbf{\dfrac{GM_{\text{Earth}}}{R_{\text{Earth}}^2}} \\ a_{\text{Saturn}} &=& \mathbf{\dfrac{GM_{\text{Saturn}}}{R_{\text{Saturn}}^2}} \\\\ \dfrac{a_{\text{Saturn}}} {a_{\text{Earth}}} &=& \dfrac{GM_{\text{Saturn}}}{R_{\text{Saturn}}^2}\above 1pt \dfrac{GM_{\text{Earth}}}{R_{\text{Earth}}^2} \\\\ \dfrac{a_{\text{Saturn}}} {a_{\text{Earth}}} &=& \dfrac{ M_{\text{Saturn}}R_{\text{Earth}}^2}{R_{\text{Saturn}}^2M_{\text{Earth}}} \quad | \quad R_{\text{Saturn}} = 9R_{\text{Earth}},\ M_{\text{Saturn}}= 95M_{\text{Earth}} \\\\ \dfrac{a_{\text{Saturn}}} {a_{\text{Earth}}} &=& \dfrac{ 95M_{\text{Earth}}R_{\text{Earth}}^2}{\left(9R_{\text{Earth}}\right)^2M_{\text{Earth}}} \\\\ \dfrac{a_{\text{Saturn}}} {a_{\text{Earth}}} &=& \dfrac{ 95R_{\text{Earth}}^2}{81R_{\text{Earth}}^2 } \\\\ \dfrac{a_{\text{Saturn}}} {a_{\text{Earth}}} &=& 1.17283950617 \\ a_{\text{Saturn}} &=& 1.17283950617 *a_{\text{Earth}} \quad | \quad a_{\text{Earth}}= 9.8\ \dfrac{m}{s^2} \\ \mathbf{ a_{\text{Saturn}} } &\approx& \mathbf{ 11.5\ \dfrac{m}{s^2} } \\ \hline \end{array}\)

 

laugh

Dec 9, 2019

2 Online Users

avatar