Hi, RP!
1. Subtracting -3n^2 from -7n^2, we get: \(-7n^2-(-3n^2)=-7n^2+3n^2=4n^2.\)
2. \((-8x^4y^3)*(2x^5y^2)+7x^9y^5\) , we can remove the parenthesis, then multiply, then add, to attain: \(-16x^9y^5+7x^9y^5=-9x^9y^5\).
3. Again: \((-4a^3b^2)^2*(3a^2b)=16a^6b^4*3a^2b=48a^8b^5.\)
4. \(5c^{-7}d^2*(-cd^2)^4\) , simplify, apply the exponent rule, and finally: \(\frac{5d^{10}}{c^3}\) . This might be wrong!!!!
5. \(\frac{18w^4x^9}{14w^5x^5}\), division, subtract powers! So, \(\frac{18x^4}{14w}\). Reduce it, to \(\frac{9x^4}{7w}.\)
6. \(\frac{15x^2y*-6x^7y}{(3xy)^2}\), remove parenthesis and simplify to get: \(-10x^7\) .
Answers:
1. \(4n^2\)
2. \(-9x^9y^5\)
3. \(48a^8b^5\)
4. \(\frac{5d^{10}}{c^3}\)
5. \(\frac{9x^4}{7w}\)
6. \(-10x^7\)
.