Questions   
Sort: 
 #2
avatar+118609 
0
Dec 14, 2019
 #2
avatar+2440 
+2

The solution(s) presented in the prior posts have one or more errors; most notably an incorrect value for (p) –the probability of a single (successful) event

 

To solve: Find (p), the probability of a single event.

 

Statement:  If I shoot 5 pieces of paper at the recycling bin, at least one of them will make it inside the recycling bin with probability \(\frac {211}{243}\)

Equivalent statistical statement:

\(\Pr(X\geq 1)= 1- \left(\sum_ \limits {i=0}^{1} \binom{5}{i} p^{i}(1-p)^{5-i}\right)=\frac {211}{243}\)

\(\text {Equivalent statement: $Pr(X\geq 1)= \Pr(X > 0) = (\frac {211}{243})$  |  Binomial events are discreet integers. }\)

\(\text {Complementary statement $Pr(X < 1) = \Pr(X = 0) =  \frac {32}{243}$ | Probability of zero (0) successes in five attempts. } \)

\(\Pr(X = 0) =  \binom{5}{0} p^{5}(1-p)^{0}=\frac {32}{243} \)

\(\rightarrow p^5=\frac {32}{243}  \text { |  Solve complementary statement for (p)} \)

\( p = \sqrt [\leftroot{-1}\uproot{1}5]{\frac {32}{243}}\rightarrow p = \frac {2}{3} \text { |  Probability of failure on a single throw}\\ \)

\(1-\frac {2}{3} =\frac {1}{3}  \text { |  Complement of failure = success }\\ \)

\(\text {Use probability of success on a single throw  $(\frac {1}{3})$  to solve:} \\ \) 

If I shoot 6 pieces of paper at the recycling bin, what's the probability at least two of them make it inside the recycling bin

Equivalent statistical statement:

\(\Pr(X\geq 2)= 1- \left(\sum_ \limits {i=0}^{1} \binom{6}{i}(\frac {1}{3})^{i}(1-\frac {1}{3})^{6-i}\right)=64.88\% \)

 

\({}\)

 

GA

Dec 14, 2019

5 Online Users

avatar
avatar
avatar
avatar
avatar