Questions   
Sort: 
 #1
avatar+26404 
+4

Compute

\(4 \cos(50^\circ) - \tan(40^\circ)\),

without using a calculator.  
 

How can I do this?

 

\(\begin{array}{|rcll|} \hline && \mathbf{4 \cos(50^\circ) - \tan(40^\circ)} \quad | \quad \cos(50^\circ)=\cos(90^\circ-40^\circ)=\sin(40^\circ) \\\\ &=& 4\sin(40^\circ) - \tan(40^\circ) \\\\ &=& 4 \sin(40^\circ)*\dfrac{\cos(40^\circ)}{\cos(40^\circ)} - \tan(40^\circ) \\\\ &=& \dfrac{2*2 \sin(40^\circ)\cos(40^\circ)} {\cos(40^\circ)} - \tan(40^\circ) \quad | \quad 2 \sin(40^\circ)\cos(40^\circ) = \sin(80^\circ) \\\\ &=& \dfrac{2\sin(80^\circ)} {\cos(40^\circ)} - \tan(40^\circ) \quad | \quad \sin(80^\circ)= \sin(180^\circ-80^\circ)=\sin(100^\circ) \\\\ &=& \dfrac{2\sin(100^\circ)} {\cos(40^\circ)} - \tan(40^\circ) \quad | \quad \cos(60^\circ)=\dfrac{1}{2} \ \text{or}\ 2=\dfrac{1}{\cos(60^\circ)} \\\\ &=& \dfrac{\sin(100^\circ)} {\cos(40^\circ)\cos(60^\circ)} - \tan(40^\circ) \\\\ &=& \dfrac{\sin(40^\circ+60^\circ)} {\cos(40^\circ)\cos(60^\circ)} - \tan(40^\circ) \\\\ &=& \dfrac{\sin(40^\circ)\cos(60^\circ)+\cos(40^\circ)\sin(60^\circ)} {\cos(40^\circ)\cos(60^\circ)} - \tan(40^\circ) \\\\ &=& \dfrac{\sin(40^\circ)\cos(60^\circ)} {\cos(40^\circ)\cos(60^\circ)}+ \dfrac{\cos(40^\circ)\sin(60^\circ)} {\cos(40^\circ)\cos(60^\circ)} - \tan(40^\circ) \\\\ &=& \dfrac{\sin(40^\circ)} {\cos(40^\circ)} + \dfrac{\sin(60^\circ)} {\cos(60^\circ)} - \tan(40^\circ) \\\\ &=& \tan(40^\circ) + \dfrac{\sin(60^\circ)} {\cos(60^\circ)} - \tan(40^\circ) \\\\ &=& \dfrac{\sin(60^\circ)} {\cos(60^\circ)} \quad | \quad \sin(60^\circ)=\dfrac{\sqrt{3}}{2},\ \cos(60^\circ)=\dfrac{1}{2} \\\\ &=& \dfrac{\sqrt{3}}{2} \above 1pt \dfrac{1}{2} \\\\ &=& \mathbf{\sqrt{3}} \\ \hline \end{array}\)

 

laugh

Jun 22, 2020
 #2
avatar+26404 
+3

If x, y, and z are positive real numbers satisfying the system above, then find x, y, and z.
\(x + y + xy = 19, \quad y + z + yz = 29, \quad z + x + zx = 23\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x + y + xy} &=& \mathbf{19} \\ x (1+y)+ y &=& 19 \\ x (1+y)+ y+1-1 &=& 19 \\ x (1+y)+ (1+y) &=& 20 \\ \mathbf{(1+y)(1+x)} &=& \mathbf{20}\quad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{y + z + yz } &=& \mathbf{29} \\ y (1+z)+ z &=& 29 \\ y (1+z)+ z+1-1 &=& 29 \\ y (1+z)+ (1+z) &=& 30 \\ \mathbf{(1+z)(1+y)} &=& \mathbf{30}\quad (2) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{z + x + zx } &=& \mathbf{23} \\ z (1+x)+ x &=& 23 \\ z (1+x)+ x+1-1 &=& 23 \\ z (1+x)+ (1+x) &=& 24 \\ \mathbf{(1+x)(1+z)} &=& \mathbf{24}\quad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(1)*(3)}{(2)}: & \dfrac{(1+y)(1+x)(1+x)(1+z)} {(1+z)(1+y)} &=& \dfrac{20*24}{30}\\ &&& 1+z \ne 0,\ \text{respectively}\ z\ne-1 \\\\ &&& 1+y \ne 0,\ \text{respectively}\ y\ne-1 \\\\ & (1+x)(1+x)^2 &=& \dfrac{20*24}{30} \\ & (1+x)^2 &=& 16 \\ & 1+x &=& 4 \quad | \quad x > 0 !\\ & \mathbf{x} &=& \mathbf{3} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(2)*(1)}{(3)}: & \dfrac{(1+z)(1+y)(1+y)(1+x) } {(1+x)(1+z) } &=& \dfrac{30*20}{24} \\ &&& 1+x \ne 0,\ \text{respectively}\ x\ne-1 \\\\ &&& 1+z \ne 0,\ \text{respectively}\ z\ne-1 \\\\ & (1+y)(1+y)^2 &=& \dfrac{30*20}{24} \\ & (1+y)^2 &=& 25 \\ & 1+y &=& 5 \quad | \quad y > 0 !\\ & \mathbf{y} &=& \mathbf{4} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(3)*(2)}{(1)}: & \dfrac{(1+x)(1+z)(1+z)(1+y)} {(1+y)(1+x)} &=& \dfrac{24*30}{20} \\ &&& 1+y \ne 0,\ \text{respectively}\ y\ne-1 \\\\ &&& 1+x \ne 0,\ \text{respectively}\ x\ne-1 \\\\ & (1+z)(1+z)^2 &=& \dfrac{24*30}{20} \\ & (1+z)^2 &=& 36 \\ & 1+z &=& 6 \quad | \quad z > 0 !\\ & \mathbf{z} &=& \mathbf{5} \\ \hline \end{array}\)

 

 

laugh

Jun 22, 2020
 #1
avatar+33666 
+2
Jun 22, 2020

3 Online Users

avatar