If you look at the "first terms", the 101, 93, ... 5, these have a difference of 8.
We can use this difference to express not only the "first terms" (101, 93, ... 5) but also the "second terms"
(97, 89, ... 1):
If n = 0: 8n + 5 = 5 8n + 1 = 1
...
If n = 11, 8n + 5 = 93 8n + 1 = 89
If n = 12, 8n + 5 = 101 8n + 1 = 97
Also note that if you multiply the expressions together, you get a difference of squares:
(101 + 97)(101 - 97) = 1012 - 972 = 792
(93 + 89)(93 - 89) = 932 - 892 = 729
...
(5 + 1)(5 - 1) = 52 - 12 = 24
If we rewrite the numbers using the 8n + 5 and 8n + 1 forms;
[ (8n + 5) + (8n + 1) ] ·[ (8n + 5) - (8n + 1) ]
= (8n + 5)2 - (8n + 1)2
= 64n2 + 80n + 25) - (64n2 + 16n + 1)
= 64n + 24 [this clearly indicates that it will be an arithmetic progression with a common difference of 64]
First term: n = 0 ---> value = 24
Last term: n = 12 ---> value = 792 [there are 13 term]
Sum = (13)(24 + 792) / 2 = 5304