Questions   
Sort: 
 #1
avatar+33661 
+1
Jul 28, 2020
 #1
avatar+118667 
0
Jul 28, 2020
 #1
avatar+118667 
+2

Here is a video on it

https://www.youtube.com/watch?v=GXWqycp3yZA

 

You do not need to watch the whole thing.   Just go through the first example and relate it to your example.

 

The rules only apply to the segments between the parallel lines (on the transversals) so one of the above can be ruled out on that.

Which one?

 

Answer that and try and then  think about why 2 more can be ruled out fairly easily.

 

Only one will be left.

Jul 28, 2020
 #1
avatar+26387 
+2

Prove that there do not exist integers m and n such that

\(5m^2 − 6mn + 7n^2 = 2011\).

 

\(\begin{array}{|rclrcl|} \hline \mathbf{5m^2 - 6mn + 7n^2} &=& \mathbf{2011} \quad | \quad *5 \\\\ 25m^2 - 30mn + 35n^2 &=& 2011*5 \\ 25m^2 - 30mn + 9n^2+ 26n^2 &=& 2011*5 \\ (5m-3n)^2+ 26n^2 &=& 2011*5 \quad | \quad \mathbf{2011*5} \equiv \mathbf{6 \pmod{13}} \\ \hline \\ (5m-3n)^2+ 26n^2 &\equiv& 6 \pmod{13} \quad | \quad \mathbf{26n^2\pmod{13}} \equiv \mathbf{0} \\ (5m-3n)^2 +0 &\equiv& 6 \pmod{13} \\ (5m-3n)^2 &\equiv& 6 \pmod{13} \quad | \quad x= 5m-2n \\ \mathbf{x^2} &\equiv& \mathbf{6 \pmod{13}} \\ \hline \end{array}\)

 

The Quadratic Reciprocity Law with Legendre symbol:

 

 

Let \(\mathbf{p}\) be an odd prime. The integer \(\mathbf{a}\), prime to \(\mathbf{p}\), is said to
be a \(\mathbf{\text{quadratic residue}}\) or \(\mathbf{\text{nonresidue}}\) of \(\mathbf{p}\) according as the congruence


\(x^2 \equiv a\pmod{p}\)


is of is not solvable. The Legendre symbol \(\left(\dfrac{a}{p}\right)\) is defined to be \(+1\) or \(-1\)
according as \(\mathbf{a}\) is a quadratic residue or nonresidure of \(\mathbf{p}\).

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2} &\equiv& \mathbf{6 \pmod{13}} \quad | \quad a = 6,\ p = 13 \\\\ \left(\dfrac{a}{p}\right) &=& \left(\dfrac{6}{13}\right) \\ \hline \\ \mathbf{\left(\dfrac{6}{13}\right)} &=& \left(\dfrac{2*3}{13}\right) \\\\ &=& \left(\dfrac{2}{13}\right)\left(\dfrac{3}{13}\right) \quad &| \quad \left(\dfrac{3}{13}\right)=\left(\dfrac{13}{3}\right) \\\\ &=& \left(\dfrac{2}{13}\right)\left(\dfrac{13}{3}\right) \\\\ &=& \left(\dfrac{2}{13}\right)\left(\dfrac{13\pmod{3}}{3}\right) \\\\ &=& \left(\dfrac{2}{13}\right)\left(\dfrac{1}{3}\right) \quad &| \quad \left(\dfrac{1}{3}\right) = 1 \\\\ &=& \left(\dfrac{2}{13}\right)*1 \\\\ &=& \left(\dfrac{2}{13}\right) \\\\ &=& \left(-1\right)^{ \frac{13^2-1}{8} } \\\\ &=& \left(-1\right)^{21} \\\\ &=& \mathbf{-1} \\ \hline \end{array}\)

 

\(\mathbf{\left(\dfrac{6}{13}\right)}=-1\), there do not exist integers m and n such that
\(5m^2 - 6mn + 7n^2 = 2011\).

 

laugh

Jul 28, 2020

4 Online Users

avatar
avatar
avatar