Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+1094 
+4

Let TU and VW be chords of a circle, which intersect at S, as shown. If ST = 3, TU = 15, and VW = 3, then find SW.

Hello Noori! I have recently answered this question here: https://web2.0calc.com/questions/let-tu-and-vw-be-chords-of-a-circle-which-intersect, which has already been answered elsewhere multiple times. BUT, before you go press on the link, I suggest you do what Melody hinted you, and then you can go to the link to check your work.


 

:)

Aug 10, 2020
 #3
avatar+1094 
+3
Aug 10, 2020
 #2
avatar+26396 
+1

There are three squares inside the triangle .

Find the area of the third triangle with steps , please

 

tan(φ)=4p1tan(φ)=q14p1+q1=4(1tan(φ)+tan(φ))tan(φ)=3p2tan(φ)=q23p2+q2=3(1tan(φ)+tan(φ))sin(φ)=xp1+q1+4sin(φ)=x4(1tan(φ)+tan(φ))+44sin(φ)=x1tan(φ)+tan(φ)+11tan(φ)+tan(φ)+1=x4sin(φ)cos(φ)=xp2+q2+3cos(φ)=x3(1tan(φ)+tan(φ))+33cos(φ)=x1tan(φ)+tan(φ)+11tan(φ)+tan(φ)+1=x3cos(φ)x4sin(φ)=x3cos(φ)tan(φ)=34cos(φ)=432+42cos(φ)=45

 

x=3cos(φ)(1tan(φ)+tan(φ)+1)x=345(134+34+1)x=345(43+34+1)x=45(4+94+3)x=45(7+94)x=45374x=375x=7.4x2=54.76 cm2

 

The area of the third triangle is 54.76 cm2

 

laugh

Aug 10, 2020
 #1
avatar+26396 
+1

Simplify 

 

02(n0)+12(n1)+22(n2)+23(n2)++(n1)2(nn1)+n2(nn),


where n2.

 

S=02(n0)+12(n1)+22(n2)+23(n2)++(n1)2(nn1)+n2(nn)S=nk=0k2(nk)S=nk=0kk(nk)|k=(k1)S=nk=0k(k1)(nk)|(k1)(nk)=(n1)(n1k1)S=nk=1k(n1)(n1k1)|(n1)=nS=nk=1kn(n1k1)S=nnk=1k(n1k1)

 

nk=1k(n1k1)= ?

(1+x)n1=(n10)x0+(n11)x1+(n12)x2++(n1n1)xn1|xx(1+x)n1=(n10)x1+(n11)x2+(n12)x3++(n1n1)xnx(1+x)n1=n1k=0(n1k)xk+1ddxx(1+x)n1=n1k=0(k+1)(n1k)xkx(n1)(1+x)n2+(1+x)n1=n1k=0(k+1)(n1k)xk|x=1(n1)(1+1)n2+(1+1)n1=n1k=0(k+1)(n1k)1k(n1)(2)n2+(2)n1=n1k=0(k+1)(n1k)(n1)2n2+2n1=nk=1k(n1k1)

 

S= ?

S=nnk=1k(n1k1)|nk=1k(n1k1)=(n1)2n2+2n1S=n((n1)2n2+2n1)S=n((n1)2n2+2n122)S=n((n1)2n2+2n22)S=n2n2(n1+2)S=n2n2(n+1)S=n(n+1)2n2|f(n)=n(n+1), g(n)=n2, n2

 

laugh

Aug 10, 2020

0 Online Users