Questions   
Sort: 
 #2
avatar+1094 
+4

Let TU and VW be chords of a circle, which intersect at S, as shown. If ST = 3, TU = 15, and VW = 3, then find SW.

Hello Noori! I have recently answered this question here: https://web2.0calc.com/questions/let-tu-and-vw-be-chords-of-a-circle-which-intersect, which has already been answered elsewhere multiple times. BUT, before you go press on the link, I suggest you do what Melody hinted you, and then you can go to the link to check your work.


 

:)

Aug 10, 2020
 #3
avatar+1094 
+3
Aug 10, 2020
 #2
avatar+26388 
+1

There are three squares inside the triangle .

Find the area of the third triangle with steps , please

 

\(\begin{array}{|rcl|} \hline \tan(\varphi) &=& \dfrac{4}{p_1} \qquad \tan(\varphi) = \dfrac{q_1}{4} \\ \hline p_1+q_1 &=& 4\left(\dfrac{1}{\tan(\varphi)}+\tan(\varphi) \right) \\ \hline \end{array} \begin{array}{|rclcrcl|} \hline \tan(\varphi) &=& \dfrac{3}{p_2} \qquad \tan(\varphi) = \dfrac{q_2}{3} \\ \hline p_2+q_2 &=& 3\left(\dfrac{1}{\tan(\varphi)}+\tan(\varphi) \right) \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \sin(\varphi)&=& \dfrac{x}{p_1+q_1+4} \\ \sin(\varphi)&=& \dfrac{x}{4\left(\dfrac{1}{\tan(\varphi)}+\tan(\varphi) \right)+4} \\ 4\sin(\varphi)&=& \dfrac{x}{ \dfrac{1}{\tan(\varphi)}+\tan(\varphi) +1} \\ \dfrac{1}{\tan(\varphi)}+\tan(\varphi)+1 &=& \dfrac{x}{4\sin(\varphi)}\\ \hline \end{array} \begin{array}{|rcll|} \hline \cos(\varphi)&=& \dfrac{x}{p_2+q_2+3} \\ \cos(\varphi)&=& \dfrac{x}{3\left(\dfrac{1}{\tan(\varphi)}+\tan(\varphi) \right)+3} \\ 3\cos(\varphi)&=& \dfrac{x}{\dfrac{1}{\tan(\varphi)}+\tan(\varphi) +1} \\ \dfrac{1}{\tan(\varphi)}+\tan(\varphi) +1 &=& \dfrac{x}{3\cos(\varphi)}\\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \dfrac{x}{4\sin(\varphi)} &=& \dfrac{x}{3\cos(\varphi)}\\ \mathbf{\tan(\varphi)} &=& \mathbf{\dfrac{3}{4}} \\ && \Rightarrow \cos(\varphi) = \dfrac{4}{\sqrt{3^2+4^2}} \\ && \Rightarrow \mathbf{\cos(\varphi) = \dfrac{4}{5} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x &=& 3\cos(\varphi) \left(\dfrac{1}{\tan(\varphi)}+\tan(\varphi) +1\right) \\\\ x &=& \dfrac{3*4}{5} \left(\dfrac{1}{ \dfrac{3}{4} }+\dfrac{3}{4} +1\right) \\\\ x &=& \dfrac{3*4}{5} \left(\dfrac{4}{3}+\dfrac{3}{4} +1\right) \\\\ x &=& \dfrac{4}{5} \left(4+\dfrac{9}{4} +3\right) \\\\ x &=& \dfrac{4}{5} \left(7+\dfrac{9}{4} \right) \\\\ x &=& \dfrac{4}{5} * \dfrac{37}{4} \\\\ x &=& \dfrac{37}{5} \\\\ \mathbf{x} &=& \mathbf{7.4} \\ \mathbf{x^2} &=& \mathbf{54.76\ \text{cm}^2} \\ \hline \end{array}\)

 

The area of the third triangle is \(\mathbf{54.76\ \text{cm}^2}\)

 

laugh

Aug 10, 2020
 #1
avatar+26388 
+1

Simplify 

 

\(0^2 \dbinom{n}{0} + 1^2 \dbinom{n}{1} + 2^2 \dbinom{n}{2} + 2^3 \dbinom{n}{2} + \dots + (n-1)^2 \dbinom{n}{n-1}+ n^2 \dbinom{n}{n}\),


where \(n \ge 2\).

 

\(\begin{array}{|rcll|} \hline \mathbf{S} &=& \mathbf{0^2 \dbinom{n}{0} + 1^2 \dbinom{n}{1} + 2^2 \dbinom{n}{2} + 2^3 \dbinom{n}{2} + \dots + (n-1)^2 \dbinom{n}{n-1}+ n^2 \dbinom{n}{n} } \\\\ \mathbf{S} &=& \mathbf{\sum \limits_{k=0}^{n} k^2\dbinom{n}{k} } \\\\ S &=& \sum \limits_{k=0}^{n} k*k*\dbinom{n}{k} \quad | \quad \mathbf{k = \dbinom{k}{1}} \\\\ S &=& \sum \limits_{k=0}^{n} k\dbinom{k}{1}\dbinom{n}{k} \quad | \quad \color{red}\dbinom{k}{1}\dbinom{n}{k}= \dbinom{n}{1}\dbinom{n-1}{k-1} \\\\ S &=& \sum \limits_{k=1}^{n} k\dbinom{n}{1}\dbinom{n-1}{k-1} \quad | \quad \mathbf{\dbinom{n}{1}=n } \\\\ S &=& \sum \limits_{k=1}^{n} kn\dbinom{n-1}{k-1} \\\\ \mathbf{S} &=& \mathbf{ n\sum \limits_{k=1}^{n} k\dbinom{n-1}{k-1} }\\ \hline \end{array}\)

 

\(\mathbf{ \sum \limits_{k=1}^{n} k\dbinom{n-1}{k-1} = \ ? }\)

\(\begin{array}{|rcll|} \hline \mathbf{\left( 1+x \right)^{n-1}} &=& \mathbf{\dbinom{n-1}{0}x^0 +\dbinom{n-1}{1}x^1 + \dbinom{n-1}{2}x^2 + \dots + \dbinom{n-1}{n-1}x^{n-1}} \quad | \quad *x \\\\ x\left( 1+x \right)^{n-1} &=& \dbinom{n-1}{0}x^1 +\dbinom{n-1}{1}x^2 + \dbinom{n-1}{2}x^3 + \dots + \dbinom{n-1}{n-1}x^{n} \\\\ x\left( 1+x \right)^{n-1} &=& \sum \limits_{k=0}^{n-1} \dbinom{n-1}{k}x^{k+1} \\\\ \dfrac{d}{dx}x\left( 1+x \right)^{n-1} &=& \sum \limits_{k=0}^{n-1} (k+1) \dbinom{n-1}{k}x^{k} \\\\ x(n-1) \left(1+x \right)^{n-2} + \left( 1+x \right)^{n-1} &=& \sum \limits_{k=0}^{n-1} (k+1) \dbinom{n-1}{k}x^{k} \quad | \quad \mathbf{x=1} \\\\ (n-1) \left(1+1 \right)^{n-2} + \left( 1+1 \right)^{n-1} &=& \sum \limits_{k=0}^{n-1} (k+1) \dbinom{n-1}{k}1^{k} \\\\ (n-1) \left(2 \right)^{n-2} + \left( 2 \right)^{n-1} &=& \sum \limits_{k=0}^{n-1} (k+1) \dbinom{n-1}{k} \\\\ (n-1) 2^{n-2} + 2^{n-1} &=& \mathbf{\sum \limits_{k=1}^{n} k \dbinom{n-1}{k-1}} \\ \hline \end{array}\)

 

\(\mathbf{S= \ ?} \)

\(\begin{array}{|rcll|} \hline \mathbf{S} &=& \mathbf{ n\sum \limits_{k=1}^{n} k\dbinom{n-1}{k-1} } \quad | \quad \mathbf{\sum \limits_{k=1}^{n} k \dbinom{n-1}{k-1} = (n-1) 2^{n-2} + 2^{n-1} }\\\\ S &=& n\left( (n-1) 2^{n-2} + 2^{n-1} \right) \\\\ S &=& n\left( (n-1) 2^{n-2} + 2^{n-1}*\dfrac{2}{2} \right) \\\\ S &=& n\left( (n-1) 2^{n-2} + 2^{n-2}*2 \right) \\\\ S &=& n2^{n-2}\left( n-1 + 2 \right) \\\\ S &=& n2^{n-2}\left( n+1 \right) \\\\ \mathbf{S} &=& \mathbf{n(n+1)2^{n-2}} \quad | \quad f(n)= n(n+1),\ g(n) = n-2,\ n \ge 2\\ \hline \end{array}\)

 

laugh

Aug 10, 2020

0 Online Users