Questions   
Sort: 
 #1
avatar
0

 

Find the area of triangle ABC if AB = BC = 12 and angle ABC = 150 degrees.    

 

Since AB = BC triangle ABC is isoceles and angles BAC and BCA are equal 

 

Since ABC = 150o and the sum of the interior angles of a triangle is 180o  

then angles A and C total 30o and therefore each of them is 15o  

 

Draw a perpendicular from the apex B down to a point on side AC - call the point P  

 

                                                          BP  

Using the sine function:    sin(15) = ———  

                                                          12 

 

                                                BP = (12)(0.65029) = 7.80        this is the height of the triangle

 

                                                            AP

Using the cosine function:  cos(15) = ———  

                                                            12 

 

                                                 AP = (12)(0.96593) = 11.59       this is half the base of the triangle  

 

So the whole base of the triangle is (2)(11.59) = 23.18              (We could have skipped this step.  Do you know why?)  

 

                                                                1

The formula for the area of a triangle is  — • base • height  

                                                                 2  

 

So, the area of this triangle is 0.5 • 23.18 • 7.80 = 90.40 units2  

 

The answer in the back of the book might be slightly different, because of the rounding that happened here.  

.

Oct 30, 2020
 #2
avatar+9479 
+1

I think it is the opposite guest... IDK the best way to explain it, but look at this graph:

 

https://www.desmos.com/calculator/din2ukxbds

 

We wish to find the max value of A while keeping S and R positive.

That appears to occur when  S = 0  and  R = 8/pi

Oct 30, 2020
Oct 29, 2020
 #2
avatar+1641 
+2

Hello, E Pavlov!   The smallest quarter-circles overlap each other. So, you must subtract the area of overlapping from the whole area.  smiley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

Oct 29, 2020

5 Online Users

avatar
avatar
avatar
avatar