Let f(x) and g(x) be functions with domain (0,∞) . Suppose f(x)=x2 and the tangent line to f(x) at x=a is perpendicular to the tangent line to g(x) at x=a for all positive real numbers a. Find all possible functions g(x).
Sei f (x) und g (x) Funktionen mit Domäne (0,∞). f(x)=x2 und die Tangentenlinie zu f (x) sei bei x = a für alle positiven reellen Zahlen a senkrecht zur Tangentenlinie zu g (x). Finde alle möglichen Funktionen g (x).
Hello yeliah!
f(x)=x2f′(x)=2x
g′(x)=−1f′(x)g′(x)=−12x
g(x)=−12⋅∫x−1⋅dx
g(x)=−12⋅ln|x|+C
{possible g(x)}∈{(−12⋅ln|Q|+Q)} Is this the correct answer?
[Added by Melody: No, this isn't right. Look at my next post for other points]
The tangent line to f(x) at x=a ? is perpendicular to the tangent line to g(x) at x=a ? for all positive real numbers a. ? Find all possible functions g(x).
I do not understand this text. Is a the same as | x |? Why?
!