Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #3
avatar+2 
0

@geometry dash Let P(m,n) denote the assertion that

f(m+n)=f(m)+f(n)−2f(mn+m+n+1)+m2+n2.f(m+n) = f(m) + f(n) - 2f(mn + m + n + 1) + m^2 + n^2.f(m+n)=f(m)+f(n)−2f(mn+m+n+1)+m2+n2.

Start with P(0,0):

f(0+0)=f(0)+f(0)−2f(0+0+0+1)+02+02.f(0 + 0) = f(0) + f(0) - 2f(0 + 0 + 0 + 1) + 0^2 + 0^2.f(0+0)=f(0)+f(0)−2f(0+0+0+1)+02+02.

This simplifies to:

f(0)=2f(0)−2f(1).f(0) = 2f(0) - 2f(1).f(0)=2f(0)−2f(1).

Given that f(1)=0f(1) = 0f(1)=0, we have:

f(0)=2f(0)−0  ⟹  f(0)=2f(0).f(0) = 2f(0) - 0 \implies f(0) = 2f(0).f(0)=2f(0)−0⟹f(0)=2f(0).

This implies f(0)=0.

Next, we apply P(m,0):

f(m+0)=f(m)+f(0)−2f(m⋅0+m+0+1)+m2+02.f(m + 0) = f(m) + f(0) - 2f(m \cdot 0 + m + 0 + 1) + m^2 + 0^2.f(m+0)=f(m)+f(0)−2f(m⋅0+m+0+1)+m2+02.

This simplifies to:

f(m)=f(m)+0−2f(m+1)+m2.f(m) = f(m) + 0 - 2f(m + 1) + m^2.f(m)=f(m)+0−2f(m+1)+m2.

Rearranging gives:

0=−2f(m+1)+m2  ⟹  2f(m+1)=m2  ⟹  f(m+1)=m22.0 = -2f(m + 1) + m^2 \implies 2f(m + 1) = m^2 \implies f(m + 1) = \frac{m^2}{2}.0=−2f(m+1)+m2⟹2f(m+1)=m2⟹f(m+1)=2m2​.

To express f(m), we note that m+1m + 1m+1 can be replaced by nnn, so:

f(n)=(n−1)22.f(n) = \frac{(n-1)^2}{2}.f(n)=2(n−1)2​.

Substituting n=m+1n = m + 1n=m+1:

f(m)=(m−1)22.f(m) = \frac{(m-1)^2}{2}.f(m)=2(m−1)2​.

We can compute f(m)f(m)f(m) for any nonnegative integer mmm:

For m=0m = 0m=0:

f(0)=(−1)22=12.f(0) = \frac{(-1)^2}{2} = \frac{1}{2}.f(0)=2(−1)2​=21​.

For m=1m = 1m=1:

f(1)=0(given).f(1) = 0 \quad \text{(given)}.f(1)=0(given).

For m=2m = 2m=2:

f(2)=(2−1)22=12.f(2) = \frac{(2-1)^2}{2} = \frac{1}{2}.f(2)=2(2−1)2​=21​.

For m=3m = 3m=3:

f(3)=(3−1)22=42=2.f(3) = \frac{(3-1)^2}{2} = \frac{4}{2} = 2.f(3)=2(3−1)2​=24​=2.

For m=4m = 4m=4:

f(4)=(4−1)22=92.f(4) = \frac{(4-1)^2}{2} = \frac{9}{2}.f(4)=2(4−1)2​=29​.

We can generalize to obtain:

f(n)=(n−1)22.f(n) = \frac{(n-1)^2}{2}.f(n)=2(n−1)2​.

Now we compute f(123)f(123)f(123):

f(123)=(123−1)22=12222=148842=7442.f(123) = \frac{(123 - 1)^2}{2} = \frac{122^2}{2} = \frac{14884}{2} = 7442.f(123)=2(123−1)2​=21222​=214884​=7442.

Mar 21, 2025
Mar 19, 2025
Mar 18, 2025
Mar 17, 2025
Mar 16, 2025
Mar 15, 2025
 #1
avatar+15075 
+1

Find all real x for

 

        I                II

2x5x3>2x5x+2+20.f(x)=2x5x32x5x+220>02(x5)(x+2)(2x5)(x3)20(x3)(x+2)>0(2x10)(x+2)(2x26x5x+15)20(x2+2x3x6)>0

2x2+4x10x202x2+11x1520x240x+60x+120>0f(x)=20x2+25x+85>0

x1,2=b±b24ac2ax1,2=25±252+4208540x0{1.5292,2.7792}

The extreme points of the hyperbolas I and II are xI=3 and xII=2.

In the calculated range is(2x5x3) < (2x5x+2+20)xR (1.52921099245<x<2.77921099245)

The extreme points of the hyperbolas I and II are xI=3 and xII=2.This gives:(2x5x3) > (2x5x+2+20)xR(2<1.5292)andx=R(2.7792<3)

 

laugh !

Mar 15, 2025
Mar 14, 2025
 #1
avatar+2 
0

I just typed out how to do it and then my post was deleted sad

I'm just gonna give the summary:

fill in a,b,c,d for the blanks.

Then, find a common denominator for all variables on the right side. At this point it should look like the image below:

 

8x3+24x2+15x+1(x+1)(x1)(x)(x+3)=a(x+1)x(x+3)(x+1)(x1)(x)(x+3)+b(x+1)x(x1)(x+1)(x1)(x)(x+3)+c(x+1)(x1)(x+3)(x+1)(x1)(x)(x+3)+d(x1)x(x+3)(x+1)(x1)(x)(x+3)

 

You can cancel the denominator on both sides and foil the polynomials on the right side (but do not multiply by a,b,c or d):

 

 8x3+24x2+15x+1=a(x3+4x2+3x)+b(x3+x2x1)+c(x3+2x23x)+d(x32x2+1)

 

x3 can only be paired with x3x2 with x2, and so on. This means ax3+bx3+cx3+dx3=8x3, or a+b+c+d=8. We can apply this rule to x3,x2,x, and the constant. So we get:

 

a+b+c+d=84a+b+2c3d=243ab3c=15c+d=1

 

You may use any method to solve this system of equations. The first step is to substitute d=c+1 into every equation. I used matrices to solve from there, but you may want to add/subtract equations depending on your knowledge. You should get the final answer:

a=469,b=5,c=149,d=59

 

p.s: you would probably have more success in getting replies if you typed your equation into the website's built-in LaTeX editor. Just sayin'

Mar 14, 2025
Mar 13, 2025
Mar 12, 2025

1 Online Users