Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar
0
Jul 18, 2021
Jul 17, 2021
 #1
avatar
+1
Jul 17, 2021
 #1
avatar+1693 
+1
Jul 17, 2021
 #1
avatar+876 
+3

Solution:

$f(x) = \frac{x - \sqrt{3}}{x\sqrt{3} + 1}$

f2(x)=x3x3+133(x3x3+1)+1=x33x+133(x3)3x+1+1=2x233x+13(x3)3x+1+1=2x23(x3+1)((x3)3x3+1+1)=2x2323x23x+1(3x+1)=2x2323x2=2(x+3)2(3x1)=x+33x1

f3(x)=f(x+33x1)=x3x3+1+33(x3x3+1)1=x33x+1+33(x3)3x+11=4x3x+13(x3)3x+11=4x(3x+1)(3(x3)3x+11)=4x(43x+1)(3x+1)=4x(x3+1)4x3+1=4x4=x

f4(x)=f(f3(x))=f(x)=x3x3+1

$f^1(x) = \frac{x - \sqrt{3}}{x\sqrt{3} + 1}$
$f^2(x) = -\frac{x+\sqrt{3}}{\sqrt{3}x-1}$
$f^3(x) = x$
$f^4(x) = \frac{x - \sqrt{3}}{x\sqrt{3} + 1}$

$2021 \pmod 3 \equiv 2 \pmod 3$

$f^{2021}(x) = f^2(x) = \boxed{-\frac{x+\sqrt{3}}{\sqrt{3}x-1}}$

.

0 Online Users