Questions   
Sort: 
 #2
avatar+8 
+1

Hello,

To simplify the expression (54u^2v + 18uv^2)(9u + 3v), we can use the distributive property of multiplication.

First, let's distribute 9u to each term inside the first parentheses:  TellPopeyes

9u * 54u^2v = 486u^3v
9u * 18uv^2 = 162u^2v^2

Next, let's distribute 3v to each term inside the first parentheses:

3v * 54u^2v = 162uv^3
3v * 18uv^2 = 54uv^3

Now, we can combine like terms:

486u^3v + 162u^2v^2 + 162uv^3 + 54uv^3

To simplify this further, we can group the terms with the same variables:

(486u^3v + 162u^2v^2) + (162uv^3 + 54uv^3)

Inside each group, we can factor out common terms:

486u^3v + 162u^2v^2 = 162u^2v(3u + v)
162uv^3 + 54uv^3 = 216uv^3(3u + v)

Now, we have:

162u^2v(3u + v) + 216uv^3(3u + v)

We can see that both terms have a common factor of (3u + v), so we can factor it out:

(162u^2v + 216uv^3)(3u + v)

And that is the simplified form of the expression.  

May 9, 2023
May 8, 2023
 #1
avatar
0
May 8, 2023

3 Online Users