We could evaluate this using the Quadratic Formula, but it's probably easier to use the onsite solver........
$${\mathtt{12.3}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{44.7}}^\circ\right)}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{9.81}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.83}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{84\,050}}{\mathtt{\,\times\,}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{149}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{600}}}}\right)}}^{\,{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{19\,947}}}}{\mathtt{\,-\,}}{\mathtt{410}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{149}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{600}}}}\right)}\right)}{{\mathtt{327}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{84\,050}}{\mathtt{\,\times\,}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{149}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{600}}}}\right)}}^{\,{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{19\,947}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{410}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{sin}}{\left({\frac{{\mathtt{149}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{600}}}}\right)}\right)}{{\mathtt{327}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.190\: \!864\: \!654\: \!893\: \!045\: \!6}}\\
{\mathtt{x}} = {\mathtt{1.954\: \!729\: \!047\: \!263\: \!137\: \!3}}\\
\end{array} \right\}$$
