x^2 + 19x + 5 = 0
a^2 + a^3
b^2 + b^3
Sum of these roots = (a^2 + b^2) + (a^3 + b^3) = (a^2 + b^2) + (a + b) (a^2 + b^2 - ab)
Also
a^2 + a^3 = a^2(a + 1) (1)
b^2 + b^3 = b^2 ( b + 1) (2)
Product of (1) , (2) = product of these roots = a^2*b^2* (a + 1) (b + 1) = (ab)^2 ( ab + (a + b) + 1)
Product of roots in x^2 + 19x + 5 = 0
ab = 5
2ab = 10
Sum of roots = a + b = -19
Square both sides
a^2 + 2ab + b^2 = 361
a^2 + b^2 = 361 - 2ab
a^2 + b^2 = 361 - 10
a^2 + b^2 = 351
Sum of roots in our quadratic =
(a^2 + b^2) + (a + b) ( a^2 + b^2 - ab) =
(351) + (-19) ( 351 - 5) = -6223
Product of roots in our quadratic =
(ab)^2 ( ab + (a + b) + 1) =
(5)^2 ( 5 -19 + 1) =
(25) ( -13) =
-325
The quadratic is
x^2 + 6223x - 325
