Questions   
Sort: 
 #1
avatar+23254 
+5

a)  Relative mins and relative max occur where f' = 0.

     f(x)  =  x³ + ax² + bx + 9   --->   f'(x)  = 3x² +2ac + b

     f'(-1)  =  3(-1)² + 2a(-1) + b  =  0                       f'(3)  =  3(3)² + 2a(3) + b  =  0

                               3 - 2a +  b  =  0                                           27 + 6a + b  =  0

                                    -2a + b  =  -3                                                 6a + b  =  -27

                                                 Combining them:   --->               - (   -2a + b  =  -3     )

                                                                                                               8a  =  -24

                                                                                                                  a  =  -3, b = -9

b)   f'(4)  =  3(4)² +2a(4) + b  =  0    --->   48 + 8a + b  =  0     --->   8a + b  =  -48

     At inflexion point, f''(x)  =  0

                     f''(x)  =  6x + 2a   --->   f''(1)  =  6(1) + 2a  =  0     --->     2a  =  -6

                                                                                                            a  =  -3

                                                                                                            b  =  -24

Nov 1, 2014
 #2
avatar+23254 
+5

CPhill's answer is correct and much shorter than mine.

However, I'm assuming that you have the property of |x/y|  =  |x|/|y| for real numbers and now you are to prove the similar case for complex numbers; that is, when z1 = a + bi and z2 = c + di,

you need to prove that       |(a + bi)/(c + di)|  =  |a + bi| / |c + di|.

By definition:  |x + yi|  =  √(x² + y²)

So (right side):  |a + bi| / |c + di|  =  √[ (a² + b²) / √(c² + d²) ]

   and, since those are all real numbers, it can be rewritten as √[ (a² + b²) / (c² + d²) ].

Now, the left side:

| (a + bi) / (c + di) |

First, we'll need to write this as one complex number in the form x + yi; so let's multiply the numerator and denominator by the conjugate of the denominator, c - di:

| (a + bi)(c - di) / ( (c + di)(c - di) ) |

=  | (ac + bd + bci - bdi) / (c² + d²) | 

Splitting these into the real part and the imaginary part:

=  | (ac + bd)/(c² + d²) + (bc-ad)i/(c² + d²) |

This is now in the form x + yi where x = (ac + bd)/(c² + d²)  and  y = (bc - ad)/(c² + d²).

Thus, the above equals:  √ [ ( (ac + bd)/(c² + d²) )² + ( (bc- ad)/(c² + d²) )² ]

And (ac + bd)²  =  a²c² + 2abcd + b²d²  and  (bc - ad)²  =  b²c² - 2abcd + a²d²

So, the numerator becomes  a²c² + b²d² + b²c² + a²d²  =  a²c² + b²c² + b²d² + a²d²

     = (factoring)   (a² + b²)c² + (a² + b²)d²  =  (a² + b²)(c² + d²)

And the denominator is:  (c² + d²)²

to give the fraction, still under a radical sign:  

      √ [ (a² + b²)(c² + d²) / (c² + d²)² ]  =  √ [ (a² + b²) / (c² + d²) ]

which is what we had for the right side.

Nov 1, 2014
 #1
avatar+23254 
0
Nov 1, 2014
 #24
avatar+1832 
0
Nov 1, 2014

2 Online Users