I am going to use quotient rule.
$$\\u=(x+1)^{0.5}\\
u'=0.5*(x+1)^{-0.5}\\\\\\
v=(x+2)[sin(3x+2)]^2\\\\
v'=1*[sin(3x+2)]^2\;\;+\;\;2(sin(3x+2))*cos(3x+2)*3\\\\
v'=sin^2(3x+2)\;\;+\;\;6sin(3x+2)cos(3x+2)\\\\\\
\frac{dy}{dx}=(e+1)^3\frac{vu'+uv'}{v^2}\\\\
vu'=(x+2)sin^2(3x+2)*0.5*(x+1)^{-0.5}\\\\
vu'=\frac{0.5(x+2)sin^2(3x+2)}{(x+1)^{0.5}}\\\\\\
uv'=(x+1)^{0.5}*sin^2(3x+2)\;\;+\;\;6sin(3x+2)cos(3x+2)\\\\
uv'=\frac{(x+1)*sin^2(3x+2)\;\;+\;\;6sin(3x+2)cos(3x+2)(x+1)^{0.5}}{(x+1)^{0.5}}$$
$$\\vu'=\frac{0.5(x+2)sin^2(3x+2)}{(x+1)^{0.5}}\\\\\\
uv'=\frac{(x+1)*sin^2(3x+2)\;\;+\;\;6sin(3x+2)cos(3x+2)(x+1)^{0.5}}{(x+1)^{0.5}}\\\\
vu'+uv'=\frac{0.5(x+2)sin^2(3x+2)+(x+1)sin^2(3x+2)\;\;+\;\;6sin(3x+2)cos(3x+2)(x+1)^{0.5}}{(x+1)^{0.5}}$$
$$\\\frac{vu'+uv'}{v^2}=\frac{[0.5(x+2)sin^2(3x+2)]+[(x+1)sin^2(3x+2)]\;\;+\;\;[6sin(3x+2)cos(3x+2)(x+1)^{0.5}]}{(x+2)^2sin^4(3x+2)(x+1)^{0.5}}
\\\\\frac{vu'+uv'}{v^2}=\frac{[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]\;\;+\;\;[6cos(3x+2)(x+1)^{0.5}]}{(x+2)^2sin^3(3x+2)(x+1)^{0.5}}$$
$$\\\frac{dy}{dx}=(e+1)^3\times \frac{[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]\;\;+\;\;[6cos(3x+2)(x+1)^{0.5}]}{(x+2)^2sin^3(3x+2)(x+1)^{0.5}}\\\\$$
There is probably only about 1000 mistakes in there.
Let's see what Heureka found ( I saw Heureka's pop-up)