Least Common Multiples(LCM) ?
A. 23^31,23^17
$$\small{ \begin{array}{l|rclclclcl} \text{Number 1:} & 23^{31} &=& 23^{\textcolor[rgb]{1,0,0}{31}} &&&&&& \\
\text{Number 2:} & 23^{17} &=& 23^{17} &&&&&&\\
\hline \text{The greatest Exponent} \\ \text{ of each prime number} &\text{LCM}&=& 23^{\textcolor[rgb]{1,0,0}{31}}&&&&&&
\end{array} }}$$
B. 3^7*5^3*7^3,2^11*3^5*5^9
$$\small{
\begin{array}{l|rclclclcl}
\text{Number 1:} & 3^{7}*5^3*7^3 &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{7}} &*& 5^3 &*& 7^{\textcolor[rgb]{1,0,0}{3}} \\
\text{Number 2:} & 2^{11}*3^5*5^9 &=& 2^{\textcolor[rgb]{1,0,0}{11}}&*& 3^5 &*& 5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^0\\ \hline
\text{The greatest Exponent}
\\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{11}}&*&3^{\textcolor[rgb]{1,0,0}{7}} &*&5^{\textcolor[rgb]{1,0,0}{9}} &*& 7^{\textcolor[rgb]{1,0,0}{3}}
\end{array}
}}$$
C. 3^13*5^17,2^12*7^21
$$\small{
\begin{array}{l|rclclclcl}
\text{Number 1:} & 3^{13}*5^{17} &=& 2^0 &*& 3^{\textcolor[rgb]{1,0,0}{13}} &*& 5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^0 \\
\text{Number 2:} & 2^{12}*7^{21} &=& 2^{\textcolor[rgb]{1,0,0}{12}}&*& 3^0 &*& 5^0 &*& 7^{\textcolor[rgb]{1,0,0}{21}}\\ \hline
\text{The greatest Exponent}
\\ \text{ of each prime number} &\text{LCM}&=& 2^{\textcolor[rgb]{1,0,0}{12}}&*&3^{\textcolor[rgb]{1,0,0}{13}} &*&5^{\textcolor[rgb]{1,0,0}{17}} &*& 7^{\textcolor[rgb]{1,0,0}{21}}
\end{array}
}}$$
