Questions   
Sort: 
 #2
avatar
+5

 $${\sqrt{{\frac{{\mathtt{4}}}{{\mathtt{6}}}}}}$$ 

1.  Change the $${\sqrt{}}$$ so that the numerator and dominator are $${\sqrt{}}$$s by themselves:  $${\frac{{\sqrt{{\mathtt{4}}}}}{{\sqrt{{\mathtt{6}}}}}}$$   

 

2.  Take the $${\sqrt{}}$$s of the numerator and the dominator and simplify them as much as you can: $${\frac{{\mathtt{2}}}{{\sqrt{{\mathtt{6}}}}}}$$

 

3.  Since $${\sqrt{{\mathtt{6}}}}$$ cannot be simplified any further and you cannot have a $${\sqrt{}}$$ in in the dominator, the $${\sqrt{}}$$ needs to come out of the dominator.  The easiest way to do that is to multiply the numerator and dominator by $${\sqrt{{\mathtt{6}}}}$$:  

 

$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}}}{{\mathtt{6}}}}$$

 

4.  Simplify the the fraction.  

     a.  Break the fraction up:  $${\frac{{\mathtt{2}}}{{\mathtt{6}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}}$$

 

      b.  Reduce the fraction $${\frac{{\mathtt{2}}}{{\mathtt{6}}}}$$ and leave $${\sqrt{{\mathtt{6}}}}$$ alone:  $${\frac{{\mathtt{1}}}{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}}}$$

 

       c.  Multiply the fraction $${\frac{{\mathtt{1}}}{{\mathtt{3}}}}$$ and $${\sqrt{{\mathtt{6}}}}$$:  $${\frac{{\sqrt{{\mathtt{6}}}}}{{\mathtt{3}}}}$$

 

$${\sqrt{{\frac{{\mathtt{4}}}{{\mathtt{6}}}}}}$$  in is simplied form is $${\frac{{\sqrt{{\mathtt{6}}}}}{{\mathtt{3}}}}$$

 

If you take $${\sqrt{{\mathtt{6}}}}$$ and divide it by $${\mathtt{3}}$$, you get a decimal number that goes on forever:  0.816496580927726...

Mar 9, 2015
Mar 8, 2015

1 Online Users